Exponential Estimators of Finite Population Variance Using Transformed Auxiliary Variables

  • Uzma YasmeenEmail author
  • Muhammad Noor-ul-Amin
  • Muhammad Hanif
Research Article


This study is based on the proposal of generalized exponential estimator for finite population variance using two transformed auxiliary variables. The expressions for mean square errors and the minimum values for the optimized constants are obtained. The conditions are obtained for which the proposed estimator are better than existing estimators. The result of empirical and simulation study indicates that the suggested estimator is efficient than existing estimators for population variance.


Transformed auxiliary variables Relative efficiency Exponential estimator 


  1. 1.
    Bahl S, Tuteja RK (1991) Ratio and product type exponential estimator. Inf Optim Sci 12:159–163MathSciNetzbMATHGoogle Scholar
  2. 2.
    Singh P, Vishwakarma K (2007) Modified exponential ratio and product estimators for finite population mean in double sampling. Aust J Stat 36:217–225CrossRefGoogle Scholar
  3. 3.
    Sharma B, Tailor R (2010) A new ratio-cum-dual to ratio estimator of finite population mean in simple random sampling. Glob J Sci Front Res 10:27–31Google Scholar
  4. 4.
    Noor-ul-Amin M, Hanif M (2012) Some exponential estimators in survey sampling. Pak J Stat 28:367–374MathSciNetGoogle Scholar
  5. 5.
    Yasmeen U, Noor ul Amin M, Hanif M (2015) Generalized exponential estimators of finite population mean using transformed auxiliary variables. Int J Appl Comput Math 1:1–10MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yasmeen U, Noor ul Amin M, Hanif M (2016) Exponential ratio and product type estimators of finite population mean. J Stat Manag Syst 19:55–71CrossRefGoogle Scholar
  7. 7.
    Isaki CT (1983) Variance estimation using auxiliary information. J Am Stat Assoc 78:117–123MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Prasad B, Singh HP (1990) Some improved ratio type estimators of finite population variance in sample survey. Commun Stat Theory Methods 19:1127–1139MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Prasad B, Singh HP (1992) Unbiased estimators of finite population variance using auxiliary information in sample survey. Commun Stat Theory Methods 21:1367–1376MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Arcos A, Rueda M, Martınez MD, González S, Roman Y (2005) Incorporating the auxiliary information available in variance estimation. Appl Math Comput 160:387–399MathSciNetzbMATHGoogle Scholar
  11. 11.
    Das AK, Tripathi TP (1978) Use of auxiliary information in estimating the finite population variance. Sankhya C 40:139–148zbMATHGoogle Scholar
  12. 12.
    Srivastava SK, Jhajj HS (1980) A class of estimators using auxiliary information for estimating finite population variance. Sankhya C 42:87–96zbMATHGoogle Scholar
  13. 13.
    Searls DT, Intarapanich P (1990) A note on an estimator for the variance that utilizes the kurtosis. Am Stat 44:295–296Google Scholar
  14. 14.
    Singh HP, Upadhyaya UD, Namjoshi UD (1988) Estimation of finite population variance. Curr Sci 57:1331–1334Google Scholar
  15. 15.
    Singh H, Singh R (2001) Improved ratio-type estimator for variance using auxiliary information. J Indian Soc Agric Sci 54:276–287MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kadilar C, Cingi H (2006) Improvement in variance estimation using auxiliary information. Hacet J Math Stat 35:111–115MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kadilar C, Cingi H (2006) Ratio estimators for population variance in simple and stratified sampling. Appl Math Comput 173:1047–1059MathSciNetzbMATHGoogle Scholar
  18. 18.
    Singh S, Horn S, Chodhury S, Yu F (1999) Calibration of the estimators of variance. Aust N Z J Stat 41:199–212MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Subramani J, Kumarapandiyan G (2012) Variance estimation using median of the auxiliary variable. Int J Probab Stat 1:36–40CrossRefGoogle Scholar
  20. 20.
    Subramani J, Kumarapandiyan G (2012) Variance estimation using quartiles and their functions of the auxiliary variable. Int J Probab Stat 2:67–72Google Scholar
  21. 21.
    Subramani J, Kumarapandiyan G (2013) Estimation of variance using known co-efficient of variation and median of an auxiliary variable. J Mod Appl Stat Methods 12:58–64CrossRefzbMATHGoogle Scholar
  22. 22.
    Yadav SK, Kadilar C (2013) A class of ratio-cum-dual to ratio estimator of population variance. J Reliab Stat Stud 6:29–34Google Scholar
  23. 23.
    Singh R, Chauhan P, Sawan N, Smarandache F (2011) Improved exponential estimator for population variance using two auxiliary variables. Ital J Pure Appl Math 28:101–108MathSciNetzbMATHGoogle Scholar
  24. 24.
    Subramani J (2015) Generalized modified ratio type estimator for estimation of population variance. Sri Lankan J Appl Stat 16:69–90CrossRefGoogle Scholar
  25. 25.
    Jhajj HS, Lata K (2015) A family of difference-cum-exponential type estimators for estimating the population variance using auxiliary information in sample surveys. J Math Stat Sci 3:10–14CrossRefGoogle Scholar
  26. 26.
    Singh HP, Singh AK, Solanki RS (2014) Estimation of finite population variance using auxiliary information in sample surveys. Statistica 74:95–112zbMATHGoogle Scholar
  27. 27.
    Ahmad Z, Ali S, Hanif M (2013) Variance estimation in two-phase sampling using multi-auxiliary variables in the presence of non-response. Pak J Stat 29:487–501MathSciNetGoogle Scholar
  28. 28.
    Debnath A, Bandyopadhyay A (2013) A class of estimators of population variance in two phase sampling. Int J Math Stat 14:103–112MathSciNetzbMATHGoogle Scholar
  29. 29.
    Cochran WG (1977) Sampling techniques. Wiley, New YorkzbMATHGoogle Scholar
  30. 30.
    Murthy MN (1967) Sampling theory and methods. Statistical Publishing Society, CalcuttazbMATHGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • Uzma Yasmeen
    • 1
    Email author
  • Muhammad Noor-ul-Amin
    • 2
  • Muhammad Hanif
    • 1
  1. 1.National College of Business Administration and EconomicsLahorePakistan
  2. 2.Comsats Institute of Information TechnologyLahorePakistan

Personalised recommendations