Advertisement

National Academy Science Letters

, Volume 42, Issue 6, pp 529–530 | Cite as

Equivalence of Planar Čech Nerves and Complexes

  • J. F. Peters
  • H. DuttaEmail author
Short Communication
  • 36 Downloads

Abstract

This article introduces proximal Čech nerves and Čech complexes, restricted to finite, bounded regions K of the Euclidean plane. A Čech nerve is a collection of intersecting balls. A main result of this article is extension of the Edelsbrunner–Harer Nerve Theorem for Čech nerves and Čech complexes.

Keywords

Ball Čech complex Čech nerve Cover Homotopic equivalence 

Notes

References

  1. 1.
    Alexandroff P (1928) Über den algemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung. Math Ann 98:634MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexandroff P (1965) Elementary concepts of topology. Dover Publications Inc, New YorkzbMATHGoogle Scholar
  3. 3.
    Borsuk K (1948) On the imbedding of systems of compacta in simplicial complexes. Fund Math 35:217–234MathSciNetCrossRefGoogle Scholar
  4. 4.
    Čech E (1966) Topological spaces. Wiley, LondonzbMATHGoogle Scholar
  5. 5.
    Edelsbrunner H, Harer JL (2010) Computational topology. An introduction. American Mathematical Society, Providence, RIzbMATHGoogle Scholar
  6. 6.
    Edelsbrunner H, Morozov D (2013) Persistent homology: theory and practice. European Congress of Mathematics, European Mathematical Society, Zrich, pp 31–50zbMATHGoogle Scholar
  7. 7.
    Leray J (1945) Sur la forme des espaces topologiques et sur les points fixes des repr’esentations. J Math Pures Appl 24(9):95–168MathSciNetzbMATHGoogle Scholar
  8. 8.
    Leray J (1946) L’anneau d’homologie d’une reprësentation. Les C r Acad Sci 222:1366–1368zbMATHGoogle Scholar
  9. 9.
    Munch E (2013) Applications of persistent homology to time varying systems. Dissertation, Duke UniversityGoogle Scholar
  10. 10.
    Peters JF (2016) Computational proximity. Excursions in the topology of digital images. Intelligent Systems Reference Library 102. Springer, Cham, p xxviii + 433.  https://doi.org/10.1007/978-3-319-30262-1 MR3727129 and Zbl 1382.68008CrossRefzbMATHGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Computational Intelligence LaboratoryUniversity of ManitobaWinnipegCanada
  2. 2.Department of Mathematics, Faculty of Arts and SciencesAdiyaman UniversityAdiyamanTurkey
  3. 3.Department of MathematicsGauhati UniversityGuwahatiIndia

Personalised recommendations