Advertisement

q-Double Cesaro Matrices and q-Statistical Convergence of Double Sequences

  • Muhammed ÇinarEmail author
  • Mikail Et
Short Communication
  • 27 Downloads

Abstract

In this study, we introduce and examine the concepts of q-double Cesaro matrices and q-statistical convergence and q-statistical limit point of double sequences. Also, we give some relations connected to these concepts.

Keywords

q-Integers Statistical convergence Cesaro summability 

Notes

References

  1. 1.
    Zygmund A (1979) Trigonometric series. Cambridge University Press, Cambridge, UKzbMATHGoogle Scholar
  2. 2.
    Steinhaus H (1951) Sur la convergence ordinaire et la convergence asymptotique. Colloq Math 2:73–74CrossRefGoogle Scholar
  3. 3.
    Fast H (1951) Sur la convergence statistique. Colloq Math 2:241–244MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Schoenberg IJ (1959) The integrability of certain functions and related summability methods. Amer Math Monthly 66:361–375MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Et M, Çınar M, Karakaş M (2013) On \(\lambda\) -statistical convergence of order \(\alpha\) of sequences of function. J Inequal Appl 204:8MathSciNetzbMATHGoogle Scholar
  6. 6.
    Connor JS (1988) The statistical and strong \(p-\)Cesàro convergence of sequences. Analysis 8:47–63MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Connor JS, Kline J (1996) On statistical limit points and the consistency of statistical convergence. J Math Anal Appl 197:392–399MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Et M, Şengül H (2014) Some Cesaro-type summability spaces of order \(\alpha\) and lacunary statistical convergence of order \(\alpha\). Filomat 28(8):1593–1602MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fridy JA (1985) On statistical convergence. Analysis 5:301–313MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fridy JA (1993) Statistical limit points. Proc Am Math Soc 118(4):1187–1192MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Çolak R, Altin Y (2013) Statistical convergence of double sequences of order \(\alpha\). J Funct Spaces Appl Art. ID 682823, 5 ppGoogle Scholar
  12. 12.
    Móricz F (2003) Statistical convergence of multiple sequences. Arch Math (Basel) 81:82–89MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mursaleen M, Edely OHH (2003) Statistical convergence of double sequences. J Math Anal Appl 288:223–231MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jackson FH (1910) On a \(q\)-definite integrals. Q J Pure Appl Math 41:193–203zbMATHGoogle Scholar
  15. 15.
    Lupaş AA (1987) \(q-\)analogue of the Bernstein operator. Seminar on numerical and statistical calculus Cluj-Napoca No 9Google Scholar
  16. 16.
    Bustoz J, Gordillo LF (2005) \(q-\)Hausdorff summability. J Comput Anal Appl 7:35–48MathSciNetzbMATHGoogle Scholar
  17. 17.
    Aktuğlu H, Bekar Ş (2011) \(q-\)Cesáro matrix and \(q-\)statistical convergence. J Comput Appl Math 235:4717–4723MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pringsheim A (1900) Zur Theorie der zweifach unendlichen Zahlenfolgen. Math Ann 53:289–321MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Freedman AR, Sember JJ (1981) Densities and summability. Pacific J Math 95:293–305MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tripathy BC (2003) Statistically convergent double sequences. Tamkang J Math 34:321–327MathSciNetzbMATHGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Department of MathematicsMus Alparslan UniversityMuşTurkey
  2. 2.Department of MathematicsFırat UniversityElazıgTurkey

Personalised recommendations