Advertisement

Mitigation of Threshold Voltage Shift Due to Negative Bias Temperature Instability by Exploiting Solgel-Derived TiO2 Incorporation

  • Nissar Mohammad KarimEmail author
  • Norhayati Soin
  • Christopher Fearday
Short Communication

Abstract

To ensure reliability inside complementary metal oxide semiconductor transistors, the results on the basis of negative bias temperature instability by incorporating aged TiO2 gels on SiO2 dielectric have been reported. TiO2 was chosen for the incorporation. Precursor aging has been carried out for 2, 3 and 4 days. Samples with maximum dielectric constant after aging and UV treatment were extracted. Under DC stress, exploiting cured sample (4 days aged and 3 h UV exposed) of TiO2 results in a 70% (70% decrease in threshold voltage) increase in drain current. Under AC or dynamic bias stress, exploiting cured sample (4 days aged and 3 h UV exposed) of TiO2 results in a 65% increase (65% decrease in threshold voltage).

Keywords

Reliability CMOS BTI Hole trapping 

Notes

Acknowledgements

This work was supported by the Bright Sparks Unit (BSU), University of Malaya (UM) and UM/MOHE HIRGA D000019-16001.

References

  1. 1.
    Alam MA, Kufluoglu H, Varghese D, Mahapatra S (2007) A comprehensive model for PMOS NBTI degradation: recent progress. Microelectron Reliab 47:853–862CrossRefGoogle Scholar
  2. 2.
    Wang Y, Cotofana SD, Fang L (2012) Statistical reliability analysis of NBTI impact on FinFET SRAMs and mitigation technique using independent-gate devices. In: IEEE/ACM international symposium on nanoscale architectures, Published, 2012Google Scholar
  3. 3.
    Yang JB, Chen TP, Gong Y, Tan SS, Ng CM, Chan L (2010) Improvement of negative bias temperature instability by stress proximity technique. IEEE Trans Electron Devices 57:238–243ADSCrossRefGoogle Scholar
  4. 4.
    C.-H. Chen, T.L. Lee, T.H. Hou, C.L. Chen, C.C. Chen, J.W. Hsu, K.L. Cheng, Y.H. Chiu, H.J. Tao, Y. Jin (2004) Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65 nm high-performance strained-Si device application, In: IEEE 2004 symposium on VLSI technology. Digest of technical papers, pp 56–57Google Scholar
  5. 5.
    Yang HS, Malik R, Narasimha S, Li Y, Divakaruni R, Agnello P, Allen S, Antreasyan A, Arnold JC, Bandy K (2004) Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing, In: IEEE international electron devices meeting. IEDM Technical Digest, pp 1075–1077Google Scholar
  6. 6.
    Lee M-D, Ho C, Yao Y-D (2011) CMOS fully compatible embedded non-volatile memory system with hybrid resistive-switching material. IEEE Trans Magn 47:653–655.  https://doi.org/10.1109/TMAG.2011.2106765 ADSCrossRefGoogle Scholar
  7. 7.
    Argall F (1968) Switching phenomena in titanium oxide thin films. Solid-State Electron 11:535–541.  https://doi.org/10.1016/0038-1101(68)90092-0 ADSCrossRefGoogle Scholar
  8. 8.
    Bartic M, Sacarescu L, Harabagiu V (2014) Structural, morphological and optical properties of TiO2 films prepared using aqueous sol–gel methods. J Mater Sci Mater Electron 25:454–460CrossRefGoogle Scholar
  9. 9.
    Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  10. 10.
    Teixeira V, Sousa E, Costa MF, Nunes C, Rosa L, Carvalho MJ, Collares-Pereira M, Roman E, Gago J (2001) Spectrally selective composite coatings of Cr–Cr2O3 and Mo–Al2O3 for solar energy applications. Thin Solid Films 392:320–326ADSCrossRefGoogle Scholar
  11. 11.
    Kumar SV, Kim CH, Sapatnekar SS (2009) A finite-oxide thickness-based analytical model for negative bias temperature instability. IEEE Trans Device Mater Reliab 9:537–556CrossRefGoogle Scholar
  12. 12.
    Krishnan AT, Chancellor C, Chakravarthi S, Nicollian PE, Reddy V, Varghese A, Khamankar RB, Krishnan S (2005) Material dependence of hydrogen diffusion: implications for NBTI degradation. In: IEEE international electron devices meeting, 2005. IEDM technical digest, p 4Google Scholar
  13. 13.
    Kucharczyk W, Shigorin VD (1989) Relationship between density and second-order non-linear susceptibility in inorganic crystals, J Phys D Appl Phys 22: 35. http://stacks.iop.org/0022-3727/22/i=1/a=005

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • Nissar Mohammad Karim
    • 1
    Email author
  • Norhayati Soin
    • 1
  • Christopher Fearday
    • 1
  1. 1.Department of Electrical EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations