National Academy Science Letters

, Volume 42, Issue 3, pp 265–267 | Cite as

Evolution of Optical Band Gap and Related Properties in Ni1−xCoxO Nanoparticles

  • P. MallickEmail author
Short Communication


Ni1−xCoxO Nanoparticles with x varying from 0 to 0.05 were synthesized by co-precipitation method. The effect of Co concentration on the optical band gap and related properties of NiO nanoparticles were studied by UV–visible spectroscopy. UV–visible characterization of these samples indicated that the band gap of NiO decreased from 3.65 to 3.38 eV with increasing Co concentration from 0 to 5% in NiO. It has been reported that the band gap of ternary compounds show band gap bowing with composition instead of linear variation. In our case it is found to be ~ 5.28 ± 0.5 eV. The refractive index and electron polarizability with Co doping concentration in NiO is calculated from the band gap. Both the parameters found to increase with increasing Co concentration in NiO. This study suggests the usefulness of these materials for optoelectronic devices.


Nanoparticles UV–visible spectroscopy Band gap Refractive index 



The author thanks Dr. N.C. Mishra, Ex-Professor of Physics, Utkal University for his encouragements and suggestions.


  1. 1.
    Phark SH, Chae SC (2015) Initial defect configuration in NiO film for reliable unipolar resistance switching of Pt/NiO/Pt structure. J Phys D Appl Phys 48(15):155102CrossRefGoogle Scholar
  2. 2.
    Steinebach H, Kannan S, Rieth L, Solzbacher F (2010) H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sens Actuators B Chem 151(1):162–168CrossRefGoogle Scholar
  3. 3.
    Niklasson GA, Granqvist CG (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17(2):127–156CrossRefGoogle Scholar
  4. 4.
    Chan IM, Hsu TY, Hong FC (2002) Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl Phys Lett 81(10):1899–1901CrossRefGoogle Scholar
  5. 5.
    Peck MA, Huh Y, Skomski R, Zhang R, Kharel P, Allison MD, Sellmyer DJ, Langell MA (2011) Magnetic properties of NiO and (Ni, Zn) O nanoclusters. J Appl Phys 109(7):07B518CrossRefGoogle Scholar
  6. 6.
    Wang J, Cai J, Lin YH, Nan CW (2005) Room-temperature ferromagnetism observed in Fe-doped NiO. Appl Phys Lett 87(20):202501CrossRefGoogle Scholar
  7. 7.
    Douvalis AP, Jankovic L, Bakas T (2007) The origin of ferromagnetism in 57Fe-doped NiO. J Phys Condens Matter 19(43):436203CrossRefGoogle Scholar
  8. 8.
    Manna S, Deb AK, Jagannath J, De SK (2008) Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods. J Phys Chem C 112(29):10659–10662CrossRefGoogle Scholar
  9. 9.
    Mallick P, Rath C, Biswal R, Mishra NC (2009) Structural and magnetic properties of Fe doped NiO. Indian J Phys 83(4):517–523CrossRefGoogle Scholar
  10. 10.
    Mallick P, Rath C, Rath A, Banerjee A, Mishra NC (2010) Antiferro to superparamagnetic transition on Mn doping in NiO. Solid State Commun 150(29):1342–1345CrossRefGoogle Scholar
  11. 11.
    Mallick P, Rath C, Biswal R, Banerjee A, Mishra NC (2008) Effect of Fe and Co doping on the structural and magnetic properties of NiO. Indian J Cryo 33:52Google Scholar
  12. 12.
    Nandy S, Maiti UN, Ghosh CK, Chattopadhyay KK (2009) Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. J Phys Condens Matter 21(11):115804CrossRefGoogle Scholar
  13. 13.
    Aydin H, Mansour SA, Aydin C, Al-Ghamdi AA, Al-Hartomy OA, El-Tantawy F, Yakuphanoglu F (2012) Optical properties of nanostructure boron doped NiO thin films. J Sol–Gel Sci Technol 64(3):728–733CrossRefGoogle Scholar
  14. 14.
    Alver U, Yaykaşlı H, Kerli S, Tanrıverdi A (2013) Synthesis and characterization of boron-doped NiO thin films produced by spray pyrolysis. Int J Miner Metall Mater 20(11):1097–1101CrossRefGoogle Scholar
  15. 15.
    Salina M, Ahmad R, Suriani AB, Rusop M (2012) Bandgap alteration of transparent zinc oxide thin film with Mg dopant. Trans Electr Electron Mater 13:64–68CrossRefGoogle Scholar
  16. 16.
    Mott NF, Davies EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, OxfordGoogle Scholar
  17. 17.
    Banerjee AN, Chattopadhyay KK (2008) In: Depla D, Maheiu S (eds) Reactive sputter deposition. Springer, Berlin, p 465Google Scholar
  18. 18.
    Mallick P, Rath C, Prakash J, Mishra DK, Choudhary RJ, Phase DM, Tripathi A, Avasthi DK, Kanjilal D, Mishra NC (2010) Swift heavy ion irradiation induced modification of the microstructure of NiO thin films. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268(10):1613–1617CrossRefGoogle Scholar
  19. 19.
    Mallick P, Biswal R (2016) Fe Doping induced shrinking of band gap of NiO nanoparticles. Nanosci Nanotechnol 6(4):59–61Google Scholar
  20. 20.
    Roffi TM, Uchida K, Nozaki S (2015) Structural, electrical, and optical properties of CoxNi1−xO films grown by metalorganic chemical vapor deposition. J Cryst Growth 414:123–129CrossRefGoogle Scholar
  21. 21.
    Kumar V, Singh JK (2010) Model for calculating the refractive index of different materials. Indian J Pure Appl Phys 48(8):571–574Google Scholar
  22. 22.
    Madelung O, Rössler U, Schulz M (eds) (2000) Landolt-Bornstein-Group III condensed matter. In: Non-tetrahedrally bonded binary compounds II, vol 41D. Springer, Berlin, pp 1–14Google Scholar
  23. 23.
    Ahmad S, Ashraf M, Ahmad A, Singh DV (2013) Electronic and optical properties of semiconductor and alkali halides. Arab J Sci Eng 38(7):1889–1894CrossRefGoogle Scholar
  24. 24.
    Mallick P, Mishra DK, Kumar P, Kanjilal D (2015) UV-Vis studies of 800 keV Ar ion irradiated NiO thin films. Mater Sci Poland 33(3):555–559CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Department of PhysicsNorth Orissa UniversityTakatpur, BaripadaIndia

Personalised recommendations