National Academy Science Letters

, Volume 42, Issue 1, pp 9–12 | Cite as

Nanostructured Features and Antimicrobial Properties of Fe3O4/ZnO Nanocomposites

  • A. BahariEmail author
  • M. Roeinfard
  • A. Ramzannezhad
  • M. Khodabakhshi
  • M. Mohseni
Short Communication


In the present work we used sol–gel method for the synthesis of the above nanocomposite because, in addition to cost savings and ease of use, it is environmentally desirable. In addition, nanostructured and antimicrobial properties of the present sample were examined using X-ray diffraction, field emission scanning electron microscope techniques and Kirby–Bauer antibacterial test. Results showed that the above sample, besides its crystal structure and spherical morphology, has antimicrobial properties that can be an appropriate option to be used in medical applications, including diagnosis and treatment.


Antibacterial properties ZnO Fe3O4 Nanocomposite Sol–gel method 



The authors are grateful for the financial support from Iran National Science Foundation (INSF) which was provided through the national project for studying on Nanostructured features and antimicrobial properties of Fe3O4/ZnO nanocomposites.


  1. 1.
    Bahari A, Sadeghi-Nik A, Roodbari M, Mirshafiei E, Amiri B (2015) Effect of silicon carbide nano dispersion on the mechanical and nano structural properties of cement. Natl Acad Sci Lett 38(4):361–364CrossRefGoogle Scholar
  2. 2.
    Krishnan R, Jayannavar AM (2004) Engines at molecular scales. Natl Acad Sci Lett (India) 27(9–10):301–314Google Scholar
  3. 3.
    Padmanaban G (2008) Genomic sciences and medical biotechnology. Natl Acad Sci Lett (India) 31(6):51–55Google Scholar
  4. 4.
    Saxena PN, Gupta S, Saxena N (2010) Toxic effects of cobalt chloride on hepatic marker enzymes in albino rat. Natl Acad Sci Lett (India) 33(7–8):259–262Google Scholar
  5. 5.
    Fulati A, Ali SMU, Asif MH, Willander M, Brännmark C, Strålfors P, Danielsson B (2010) An intracellular glucose biosensor based on nanoflake ZnO. Sens Actuators B Chem 150(2):673–680CrossRefGoogle Scholar
  6. 6.
    Jansson T, Clare-Salzler ZJ, Zaveri TD, Mehta S, Dolgova NV, Chu BH, Keselowsky BG (2012) Antibacterial effects of zinc oxide nanorod surfaces. J Nanosci Nanotechnol 12(9):7132–7138CrossRefGoogle Scholar
  7. 7.
    Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24(2):192–196Google Scholar
  8. 8.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182ADSCrossRefGoogle Scholar
  9. 9.
    Wang Y, Gao S, Ye WH, Yoon HS, Yang YY (2006) Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5(10):791–796ADSCrossRefGoogle Scholar
  10. 10.
    Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Dai H (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5(12):971–976ADSCrossRefGoogle Scholar
  11. 11.
    Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle—assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5(4):1014–1020CrossRefGoogle Scholar
  12. 12.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRefGoogle Scholar
  13. 13.
    Szabó T, Németh J, Dékány I (2003) Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloids Surf A 230(1):23–35CrossRefGoogle Scholar
  14. 14.
    Romaña DL, Brown KH, Guinard JX (2002) Sensory trial to assess the acceptability of zinc fortificants added to iron-fortified wheat products. J Food Sci 67(1):461–465CrossRefGoogle Scholar
  15. 15.
    Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Meng H, Chen Z, Zhao F, Chai ZF (2007) Dependence of nanotoxicity on nanoscale characteristics and strategies for reducing and eliminating nanotoxicity. Nanotoxicology 1:265–280Google Scholar
  17. 17.
    Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50(1):1–6CrossRefGoogle Scholar
  18. 18.
    Sarlo K, Blackburn KL, Clark ED, Grothaus J, Chaney J, Neu S, Kuhn M (2009) Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology 263(2):117–126CrossRefGoogle Scholar
  19. 19.
    Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3):186–196CrossRefGoogle Scholar
  20. 20.
    Hasanpour A, Niyaifar M, Asan M, Amighian J (2013) Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol–gel method. J Magn Magn Mater 334:41–44ADSCrossRefGoogle Scholar
  21. 21.
    Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 8(1):37–45CrossRefGoogle Scholar
  22. 22.
    Rahpaima G, Mohseni SM (2013) Synthesis, characterization, and biological activities of organosoluble and thermally stable xanthone-based polyamides. J Mater Sci 48(6):2520–2529ADSCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • A. Bahari
    • 1
    Email author
  • M. Roeinfard
    • 1
  • A. Ramzannezhad
    • 1
  • M. Khodabakhshi
    • 1
  • M. Mohseni
    • 1
  1. 1.University of MazandaranBabolsarIran

Personalised recommendations