Advertisement

Practical approaches on the long-acting injections

  • Yu-Chul Kim
  • Kyoung Ah Min
  • Dong-Jin Jang
  • Tae Young Ahn
  • Jae Hyeok Min
  • Byeong Eun Yu
  • Kwan Hyung ChoEmail author
Review
  • 20 Downloads

Abstract

Background

Over the last several decades, long-acting injections have been studied in order to overcome such problems as low bioavailability in the oral route, the short durations of action in conventional injection, and the poor medication adherence in patients.

Area covered

The authors classified long-acting injections into three categories, namely, molecular modification, nanovehicle carriers, and stimuli-responsive hydrogels. The mechanisms and practical cases of these long acting injectable formulations, including conventional and recent technologies, were described and discussed in this review.

Expert opinion

Long-acting injection formulations has been proven to be useful from a number of preclinical and clinical studies. Therefore, the long-acting injection technologies can be promising strategy for precision and personalized medicine if the characteristics of formulation such as extended release and the drug-targeting are used appropriately.

Keywords

Long-acting injection Molecular modification Nanovehicle Hydrogel 

Notes

Acknowledgements

This work was supported by the 2018 Inje University research grant.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involved in human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Alibolandi M, Taghdisi SM, Ramezani P, Shamili FH, Farzad SA, Abnous K, Ramezani M (2017) Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 519:352–364CrossRefGoogle Scholar
  2. Azzi J, Jraij A, Auezova L, Fourmentin S, Greige-Gerges H (2018) Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoll 81:328–340CrossRefGoogle Scholar
  3. Bi YE, Zhou Y, Wang M, Li L, Lee RJ, Xie J, Teng L (2017) Targeted delivery of cordycepin to liver cancer cells using transferrin-conjugated liposomes. Anticancer Res 37:5207–5214Google Scholar
  4. Borden M, Sirsi S (2014) Ultrasound imaging: better contrast with vesicles. Nat Nanotechnol 9:248–249CrossRefGoogle Scholar
  5. Chen J, Lu WL, Gu W, Lu SS, Chen ZP, Cai BC, Yang XX (2014) Drug-in-cyclodextrin-in-liposomes: a promising delivery system for hydrophobic drugs. Expert Opin Drug Deliv 11:565–577CrossRefGoogle Scholar
  6. Chen Y, Luan J, Shen W, Lei K, Yu L, Ding J (2016) Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl Mater Interfaces 8:30703–30713CrossRefGoogle Scholar
  7. Chen X, Deng J, Cui W, Hou S, Zhang J, Zheng X, Ding X, Wei H, Zhou Z, Kim K, Zhan CG, Zheng F (2018) Development of Fc-fused cocaine hydrolase for cocaine addiction treatment: catalytic and pharmacokinetic properties. AAPS J 20:53CrossRefGoogle Scholar
  8. Chia J, Louber J, Glauser I, Taylor S, Bass GT, Dower SK, Gleeson PA, Verhagen AM (2018) Half-life-extended recombinant coagulation factor IX-albumin fusion protein is recycled via the FcRn-mediated pathway. J Biol Chem 293:6363–6373CrossRefGoogle Scholar
  9. Chowdhury N, Vhora I, Patel K, Doddapaneni R, Mondal A, Singh M (2017) Liposomes co-loaded with 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) shRNA plasmid and docetaxel for the treatment of non-small cell lung cancer. Pharm Res 34:2371–2384CrossRefGoogle Scholar
  10. Citrome L (2016) Aripiprazole long-acting injectable formulations for schizophrenia: aripiprazole monohydrate and aripiprazole lauroxil. Expert Rev Clin Pharmacol 9:169–186CrossRefGoogle Scholar
  11. Cuming RS, Abarca EM, Duran S, Wooldridge AA, Stewart AJ, Ravis W, Babu RJ, Lin YJ, Hathcock T (2017) Development of a sustained-release voriconazole-containing thermogel for subconjunctival injection in horses. Invest Ophthalmol Vis Sci 58:2746–2754CrossRefGoogle Scholar
  12. Darwish WM, Bayoumi NA, El-Kolaly MT (2018) Laser-responsive liposome for selective tumor targeting of nitazoxanide nanoparticles. Eur J Pharm Sci 111:526–533CrossRefGoogle Scholar
  13. Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA (2016) Elastin-like polypeptides: therapeutic applications for an emerging class of nanomedicines. J Control Release 24:93–108CrossRefGoogle Scholar
  14. Din FU, Kim DW, Choi JY, Thapa RK, Mustapha O, Kim DS, Oh YK, Ku SK, Youn YS, Oh KT, Yong CS, Kim JO, Choi HG (2017) Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater 54:239–248CrossRefGoogle Scholar
  15. Ding D, Zhu Q (2017) Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng, C 92:1041–1060CrossRefGoogle Scholar
  16. Feliu N, Walter MV, Montañez MI, Kunzmann A, Hult A, Nyström A, Malkoch M, Fadeel B (2012) Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials 33:1970–1981CrossRefGoogle Scholar
  17. Galan-Navarro C, Rincon-Restrepo M, Zimmer G, Saphire EO, Hubbell JA, Hirosue S, Swartz MA, Kunz S (2017) Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology 512:161–171CrossRefGoogle Scholar
  18. Gao M, Peng Y, Jiang L, Qiu L (2018) Effective intracellular delivery and Th1 immune response induced by ovalbumin loaded in pH-responsive polyphosphazene polymersomes. Nanomedicine 14:1609–1618CrossRefGoogle Scholar
  19. Garcia-Gallego S, Hult D, Olsson JV, Malkoch M (2015) Fluoride-promoted esterification with imidazolide-activated compounds: a modular and sustainable approach to dendrimers. Angew Chem Int Ed Engl 54:2416–2419CrossRefGoogle Scholar
  20. Gatti S, Agostini A, Palmiero UC, Colombo C, Peviani M, Biffi A, Moscatelli D (2018) Hydrazone linked doxorubicin-PLA prodrug nanoparticles with high drug loading. Nanotechnology 29:305602CrossRefGoogle Scholar
  21. Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C, Auezova L (2015) Liposomes incorporating cyclodextrin-drug inclusion complexes: current state of knowledge. Carbohydr Polym 129:176–186CrossRefGoogle Scholar
  22. Ho MJ, Lee DR, Im SH, Yoon JA, Shin CY, Kim HJ, Kang SW, Choi YW, Han YT, Kang MJ (2018) Microsuspension of fatty acid esters of entecavir for parenteral sustained delivery. Int J Pharm 543:52–59CrossRefGoogle Scholar
  23. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  24. Hsu CY, Sung CT, Aljuffali IA, Chen CH, Hu KY, Fang JY (2018) Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. Nanomedicine 14:215–225CrossRefGoogle Scholar
  25. Hu Q, Katti P, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6:12273–12286CrossRefGoogle Scholar
  26. Huang J, Jiang X (2018) Injectable and degradable pH-responsive hydrogels via spontaneous amino–yne click reaction. ACS Appl Mater Interfaces 10:361–370CrossRefGoogle Scholar
  27. Huang D, Yang F, Wang X, Shen H, You Y, Wu D (2016) Facile synthesis and self-assembly behaviour of pH-responsive degradable polyacetal dendrimers. Polym Chem 7:6154–6158CrossRefGoogle Scholar
  28. Huang D, Wang W, Yang F, Shen H, Weng Z, Wu D (2017) Charge-reversible and pH-responsive biodegradable micelles and vesicles from linear-dendritic supramolecular amphiphiles for anticancer drug delivery. Polym Chem 8:6675–6687CrossRefGoogle Scholar
  29. Jabeen S, Islam A, Ghaffar A, Gull N, Hameed A, Bashir A, Jamil T, Hussain T (2017) Development of a novel pH sensitive silane crosslinked injectable hydrogel for controlled release of neomycin sulfate. Int J Biol Macromol 97:218–227CrossRefGoogle Scholar
  30. Jain JP, Jatana M, Chakrabarti A, Kumar N (2011) Amphotericin-b-loaded polymersomes formulation (pambo) based on (peg) (3)-pla copolymers: an in vivo evaluation in a murine model. Mol Pharm 8:204–212CrossRefGoogle Scholar
  31. Khan R, Irchhaiya R (2017) An overview on niosomes as efficient drug carriers. Int J Pharm Bio Sci 8:106–116Google Scholar
  32. Kim JA, Kim JC (2018) Temperature and electric field-triggerable liposomes incorporating poly(hydroxyethyl acrylate-co-hexadecyl acrylate-co-carboxyethyl acrylate). J Ind Eng Chem 62:383–391CrossRefGoogle Scholar
  33. Kim HO, Yeom A, Kim J, Kukreja A, Na W, Choi J, Kang A, Yun D, Lim JW, Song D, Haam S (2017) Reactive oxygen species-regulating polymersome as an antiviral agent against influenza virus. Small 13(32):1700818CrossRefGoogle Scholar
  34. Kramer M, Litman R, Hough D, Lane R, Lim P, Liu Y, Eerdekens M (2010) Paliperidone palmitate, a potential long-acting treatment for patients with schizophrenia. Results of a randomized, double-blind, placebo-controlled efficacy and safety study. Int. J Neuropharmacol 13(5):635–647Google Scholar
  35. Lee JM, Park HS, Oh KT, Lee ES (2018) pH-Responsive hyaluronated liposomes for docetaxel delivery. Int J Pharm 547:377–384CrossRefGoogle Scholar
  36. Leng D, Chen H, Li G, Guo M, Zhu Z, Xu L, Wang Y (2014) Development and comparison of intramuscularly long-acting paliperidone palmitate nanosuspensions with different particle size. Int J Pharm 472:380–385CrossRefGoogle Scholar
  37. Liang H, Li X, Wang B, Chen B, Zhao Y, Sun J, Zhuang Y, Shi J, Shen H, Zhang Z, Dai J (2016) A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep 6:18205CrossRefGoogle Scholar
  38. Liu L, Gao Q, Lu X, Zhou H (2016) In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci 11:673–683CrossRefGoogle Scholar
  39. Liu Z, Xu G, Wang C, Li C, Yao P (2017) Shear-responsive injectable supramolecular hydrogel releasing doxorubicin loaded micelles with pH-sensitivity for local tumor chemotherapy. Int J Pharm 530:53–62CrossRefGoogle Scholar
  40. Liu Y, Wang HY, Zhou L, Su Y, Shen WC (2018) Biodistribution, activation, and retention of proinsulin-transferrin fusion protein in the liver: mechanism of liver-targeting as an insulin prodrug. J Control Release 275:186–191CrossRefGoogle Scholar
  41. Luo T, Kiick KL (2013) Collagen-like peptides and peptide–polymer conjugates in the design of assembled materials. Eur Polym J. 49:2998–3009CrossRefGoogle Scholar
  42. Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR (2012) Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interface Sci 183–184:46–54CrossRefGoogle Scholar
  43. McMillan J, Szlachetka A, Slack L, Sillman B, Lamberty B, Morsey B, Callen S, Gautam N, Alnouti Y, Edagwa B, Gendelman HE, Fox HS (2017) Pharmacokinetics of a long-acting nanoformulated dolutegravir prodrug in rhesus macaques. Antimicrob Agents Chemother 62:e01316–e01317CrossRefGoogle Scholar
  44. Mohri K, Kusuki E, Ohtsuki S, Takahashi N, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y, Nishikawa M (2015) Self-assembling DNA dendrimer for effective delivery of immunostimulatory CpG DNA to immune cells. Biomacromol 16:1095–1101CrossRefGoogle Scholar
  45. Nagahama K, Kawano D, Oyama N, Takemoto A, Kumano T, Kawakami J (2015) Self-assembling polymer micelle/clay nanodisk/doxorubicin hybrid injectable gels for safe and efficient focal treatment of cancer. Biomacromol 16:880–889CrossRefGoogle Scholar
  46. Okamoto Y, Taguchi K, Yamasaki K, Sakuragi M, Kuroda S, Otagiri M (2018) Albumin-encapsulated liposomes: a novel drug delivery carrier with hydrophobic drugs encapsulated in the inner aqueous core. J Pharm Sci 107:436–445CrossRefGoogle Scholar
  47. Pagès-Puigdemont N, Mangues MA, Masip M, Gabriele G, Fernández-Maldonado L (2016) Patients’ perspective of medication adherence in chronic conditions: a qualitative study. Adv Ther 33:1740–1754CrossRefGoogle Scholar
  48. Qu Y, Yang J, Zhan P, Liu S, Zhang K, Jiang Q, Li C, Ding B (2017) Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs. ACS Appl Mater 9:20324–20329CrossRefGoogle Scholar
  49. Rahnfeld L, Thamm J, Steiniger F, van Hoogevest P, Luciani P (2018) Study on the in situ aggregation of liposomes with negatively charged phospholipids for use as injectable depot formulation. Colloids Surf B Biointerfaces 168:10–17CrossRefGoogle Scholar
  50. Rahoui N, Jiang B, Taloub N, Hegazy M, Huang YD (2018) Synthesis and evaluation of water soluble pH sensitive poly (vinyl alcohol)-doxorubicin conjugates. J Biomater Sci Polym Ed 29:1482–1497CrossRefGoogle Scholar
  51. Reshetnikov V, Arkhypov A, Julakanti PR, Mokhir A (2018) A cancer specific oxaliplatin-releasing Pt(iv)-prodrug. Dalton Trans 47:6679–6682CrossRefGoogle Scholar
  52. Rogina A, Ressler A, Matić I, Gallego Ferrer G, Marijanović I, Ivanković M, Ivanković H (2017) Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydr Polym 166:173–182CrossRefGoogle Scholar
  53. Salanzo G, Navarro G, Trivedi MS, De Rosa G, Torchilin VP (2015) Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol Cancer Ther 14:1075–1084CrossRefGoogle Scholar
  54. Samed N, Sharma V, Sundaramurthy A (2018) Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: an efficient system for oral anti-diabetic formulation. Appl Surf Sci 449:567–573CrossRefGoogle Scholar
  55. Schellenberger V, Wang CW, Geething NC, Spink BJ, Campbell A, To W, Scholle MD, Yin Y, Yao Y, Bogin O, Cleland JL, Silverman J, Stemmer WP (2009) A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol 27:1186–1190CrossRefGoogle Scholar
  56. Shehata T, Kimura T, Higaki T, Ogawara K (2016) In-vivo disposition characteristics of PEG niosome and its interaction with serum proteins. Int J Pharm 512:322–328CrossRefGoogle Scholar
  57. Song SJ, Lee SG, Lee Y, Choi JS (2016) Enzyme-responsive destabilization of stabilized plasmid-lipid nanoparticles as an efficient gene delivery. Eur J Pharm Sci 91:20–30CrossRefGoogle Scholar
  58. Sun Y, Lu X, Gai Y, Sha C, Leng G, Yang X, Liu W (2018) LC-MS/MS method for the determination of the prodrug aripiprazole lauroxil and its three metabolites in plasma and its application to in vitro biotransformation and animal pharmacokinetic studies. J Chromatogr B 1081:67–75CrossRefGoogle Scholar
  59. Teekamp N, Van Dijk F, Broesder A, Evers M, Zuidema J, Steendam R, Post E, Hillebrands JL, Frijink HW, Poelstra K, Beljaars L, Olinga P, Hinrichs WLJ (2017) Polymeric microspheres for the sustained release of a protein-based drug carrier targeting the PDGFβ-receptor in the fibrotic kidney. Int J Pharm 534:229–236CrossRefGoogle Scholar
  60. Tolan D, Gandin V, Morrison L, El-Nahas A, Marzano C, Montagner D, Erxleben A (2016) Oxidative stress induced by Pt(IV) pro-drugs based on the cisplatin scaffold and indole carboxylic acids in axial position. Sci Rep 6:29367CrossRefGoogle Scholar
  61. Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172:33–70CrossRefGoogle Scholar
  62. Valluzzi R, Winkler S, Wilson D, Kaplan DL (2002) Silk: molecular organization and control of assembly. Philos Trans R Soc Lond B 357:165–167CrossRefGoogle Scholar
  63. Varypataki EM, van der Maaden K, Bouwstra J, Ossendorp F, Jiskoot W (2015) Cationic liposomes loaded with a synthetic long peptide and Poly(I:C): a defined adjuvanted vaccine for induction of antigen-specific T cell cytotoxicity. AAPS J 17:216–226CrossRefGoogle Scholar
  64. Verma P, Thakur AS, Deshmukh K, Jha AK, Verma S (2010) Routes of drug administration. Int J Pharm Stud Res 1:54–59Google Scholar
  65. Wang W, Zhang D, Yang R, Xia W, Qian K, Shi Z, Brown R, Zhou H, Xi Y, Shi L, Chen L, Xu F, Sun X, Zhu D, Gong DW (2018) Hepatic and cardiac beneficial effects of a long-acting Fc-apelin fusion protein in diet-induced obese mice. Diabetes Metab Res Rev 34:e2997CrossRefGoogle Scholar
  66. Wei XL, Han YR, Quan LH, Lui CY, Liao YH (2013) Oily nanosuspension for long-acting intramuscular delivery of curcumin didecanoate prodrug: preparation, characterization and in vivo evaluation. Eur J Pharm Sci 49:286–293CrossRefGoogle Scholar
  67. Xiong D, Zhang R, Luo W, Gu H, Peng S, Zhang L (2017) Hydrazone cross-linked micelles based on redox degradable block copolymer for enhanced stability and controlled drug release. React Funct Polym 119:64–74CrossRefGoogle Scholar
  68. Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C (2017) Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Interfaces 9:20361–20375CrossRefGoogle Scholar
  69. Yang G, Wang Q, Gao Y, Yang C, Hu L (2018) Combination of coating and injectable hydrogel depot to improve the sustained delivery of insulin. J Drug Deliv Sci Technol 45:415–421CrossRefGoogle Scholar
  70. Yao C, Liu J, Wu X, Tai Z, Gao Y, Zhu Q, Li J, Zhang L, Hu C, Gu F, Gao J, Gao S (2016) Reducible self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a for androgen-independent prostate cancer therapy. J Control Release 232:203–214CrossRefGoogle Scholar
  71. Ye H, Owh C, Jiang S, Ng CZQ, Wirawan D, Loh XJ (2016) A thixotropic polyglycerol sebacate-based supramolecular hydrogel as an injectable drug delivery matrix. Polymers 8:130CrossRefGoogle Scholar
  72. Zhang K, Shi X, Lin X, Yao C, Shen L, Feng Y (2015) Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv 22:375–382CrossRefGoogle Scholar
  73. Zhang C, Pan D, Li J, Hu J, Bains A, Guys N, Zhu H, Li X, Luo K, Gong Q, Gu Z (2017a) Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 55:153–162CrossRefGoogle Scholar
  74. Zhang C, Yu R, Li Z, Feng C, Wang Q, Liu Y, Su Z (2017b) Development of long-acting ciliary neurotrophic factor by site-specific conjugation with different-sized polyethylene glycols and transferrin. Int J Pharm 529(1–2):275–284CrossRefGoogle Scholar
  75. Zhang K, Liu J, Guo Y, Li Y, Ma X, Lei Z (2018) Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release. Mater Sci Eng, C 87:1–9CrossRefGoogle Scholar
  76. Zhao L, Niu L, Liang H, Tan H, Liu C, Zhu F (2017) pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl Mater Interfaces 9:37563–37564CrossRefGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2019

Authors and Affiliations

  • Yu-Chul Kim
    • 2
  • Kyoung Ah Min
    • 1
  • Dong-Jin Jang
    • 2
  • Tae Young Ahn
    • 1
  • Jae Hyeok Min
    • 1
  • Byeong Eun Yu
    • 1
  • Kwan Hyung Cho
    • 1
    Email author
  1. 1.College of Pharmacy and Inje Institute of Pharmaceutical Sciences and ResearchInje UniversityGimhaeRepublic of Korea
  2. 2.Department of Pharmaceutical EngineeringInje UniversityGimhaeRepublic of Korea

Personalised recommendations