Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles

  • Enas M. ElmowafyEmail author
  • Mattia Tiboni
  • Mahmoud E. Soliman



Poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) are among the well-documented FDA-approved polymers used for the preparation of safe and effective vaccine, drug and gene delivery systems using well-described reproducible methods of fabrication. Various nano and microparticulates are fabricated using these polymers. Their successful performance relies on PLA and PLGA biocompatibility and degradability characteristics.

Area covered

This review provides an overview of the biocompatibility and biodegradation of PLA, PLGA and their copolymers, with a special emphasis on tissue responses for these polymers as well as their degradation pathways and drug release models. Moreover, the potential of PLA and PLGA based nano and microparticulates in various advanced biomedical applications is highlighted.

Expert opinion

PLA and PLGA based delivery systems show promises of releasing different drugs, proteins and nucleic acids in a stable and controlled manner and greatly ameliorating their therapeutic efficacy. In addition, advancement in surface modification and targeting of nanoparticles has extended the scope of their utility.


Biocompatibility Biodegradation PLA PLGA Microparticles Nanoparticles 



This work was supported by Department of Pharmacy and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo-Egypt.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest in this work.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34:123–140Google Scholar
  2. Agrahari V, Agrahari V, Mitra AK (2016) Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Therap Deliv 7:257–278CrossRefGoogle Scholar
  3. Ahmed J, Varshney SK (2011) Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop 14:37–58CrossRefGoogle Scholar
  4. Alexis F (2005) Factors affecting the degradation and drug-release mechanism of poly (lactic acid) and poly [(lactic acid)-co-(glycolic acid)]. Polym Int 54:36–46CrossRefGoogle Scholar
  5. Alsaheb RAA, Aladdin A, Othman NZ, Malek RA, Leng OM, Aziz R, El Enshasy HA (2015) Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7:51–63Google Scholar
  6. Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24CrossRefPubMedGoogle Scholar
  7. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100CrossRefPubMedGoogle Scholar
  8. Antheunis H, van der Meer J-C, de Geus M, Kingma W, Koning CE (2009) Improved mathematical model for the hydrolytic degradation of aliphatic polyesters. Macromolecules 42:2462–2471CrossRefGoogle Scholar
  9. Antheunis H, van der Meer J-C, de Geus M, Heise A, Koning CE (2010) Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters. Biomacromol 11:1118–1124CrossRefGoogle Scholar
  10. Anugraha G, Madhumathi J, Prita PJJ, Kaliraj P (2015) Biodegradable poly-l-lactide based microparticles as controlled release delivery system for filarial vaccine candidate antigens. Eur J Pharmacol 747:174–180CrossRefPubMedGoogle Scholar
  11. Ashhurst AS, Parumasivam T, Chan JGY, Lin LC, Flórido M, West NP, Chan H-K, Britton WJ (2018) PLGA particulate subunit tuberculosis vaccines promote humoral and Th17 responses but do not enhance control of mycobacterium tuberculosis infection. PLoS ONE 13:e0194620CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bailey BA, Desai K-GH, Ochyl LJ, Ciotti SM, Moon JJ, Schwendeman SP (2017) Self-encapsulating poly (lactic-co-glycolic acid)(PLGA) microspheres for intranasal vaccine delivery. Mol Pharm 14:3228–3237CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bala I, Hariharan S, Kumar MR (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carr Syst 21:387–422CrossRefGoogle Scholar
  14. Bao X, Gao M, Xu H, Liu K-X, Zhang C-H, Jiang N, Chu Q-C, Guan X, Tian Y (2015) A novel oleanolic acid-loaded PLGA-TPGS nanoparticle for liver cancer treatment. Drug Dev Ind Pharm 41:1193–1203CrossRefPubMedGoogle Scholar
  15. Baoum A, Dhillon N, Buch S, Berkland C (2010) Cationic surface modification of PLG nanoparticles offers sustained gene delivery to pulmonary epithelial cells. J Pharm Sci 99:2413–2422CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bawa KK, Jazani AM, Shetty C, Oh JK (2018) PLA-based triblock copolymer micelles exhibiting dual acidic pH/reduction responses at dual core and core/corona interface locations. Macromol Rapid Commun 39:1800477CrossRefGoogle Scholar
  17. Bhardwaj U, Sura R, Papadimitrakopoulos F, Burgess DJ (2010) PLGA/PVA hydrogel composites for long-term inflammation control following sc implantation. Int J Pharm 384:78–86CrossRefPubMedGoogle Scholar
  18. Bi C, Wang A, Chu Y, Liu S, Mu H, Liu W, Wu Z, Sun K, Li Y (2016) Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomed 11:6547CrossRefGoogle Scholar
  19. Brown A, Zaky S, Ray H Jr, Sfeir C (2015) Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater 11:543–553CrossRefPubMedGoogle Scholar
  20. Busatto C, Pesoa J, Helbling I, Luna J, Estenoz D (2018) Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: experimental and mathematical modeling. Int J Pharm 536:360–369CrossRefPubMedGoogle Scholar
  21. Cerqueira BBS, Lasham A, Shelling AN, Al-Kassas R (2017) Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater Sci Eng, C 76:593–600CrossRefGoogle Scholar
  22. Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–1821CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chen Y-N, Hsu S-L, Liao M-Y, Liu Y-T, Lai C-H, Chen J-F, Nguyen M-H, Su Y-H, Chen S-T, Wu L-C (2017) Ameliorative effect of curcumin-encapsulated hyaluronic acid–PLA nanoparticles on thioacetamide-induced murine hepatic fibrosis. Int J Environ Res Public Health 14:11CrossRefGoogle Scholar
  24. Clawson C, Huang C-T, Futalan D, Seible DM, Saenz R, Larsson M, Ma W, Minev B, Zhang F, Ozkan M (2010) Delivery of a peptide via poly(d,l-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity. Nanomedicine 6:651–661CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cruz LJ, Tacken PJ, Eich C, Rueda F, Torensma R, Figdor CG (2017) Controlled release of antigen and toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine 12:491–510CrossRefPubMedGoogle Scholar
  26. D’Souza S, Faraj JA, Dorati R, DeLuca PP (2015) Enhanced degradation of lactide-co-glycolide polymer with basic nucleophilic drugs. Adv Pharm. CrossRefGoogle Scholar
  27. Dailey L, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, Kissel T, Seeger W (2006) Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol 215:100–108CrossRefPubMedGoogle Scholar
  28. Dang TT, Bratlie KM, Bogatyrev SR, Chen XY, Langer R, Anderson DG (2011) Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response. Biomaterials 32:4464–4470CrossRefPubMedPubMedCentralGoogle Scholar
  29. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522CrossRefPubMedGoogle Scholar
  30. Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, Fahmy TM (2012) Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 33:4957–4964CrossRefPubMedPubMedCentralGoogle Scholar
  31. Derman S, Mustafaeva ZA, Abamor ES, Bagirova M, Allahverdiyev A (2015) Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J Biomed Sci 22:89CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. CrossRefGoogle Scholar
  33. Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F (2011) Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomed 6:877CrossRefGoogle Scholar
  34. Dischert W, Soucaille P (2015) Method for producing high amount of glycolic acid by fermentation. Google PatentsGoogle Scholar
  35. Dorati R, Genta I, Colonna C, Modena T, Pavanetto F, Perugini P, Conti B (2007) Investigation of the degradation behaviour of poly (ethylene glycol-co-d,l-lactide) copolymer. Polym Degrad Stab 92:1660–1668CrossRefGoogle Scholar
  36. Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352CrossRefGoogle Scholar
  37. Engineer C, Parikh J, Raval A (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 25:79–85Google Scholar
  38. Ensari N, Tutar H, Ekinci O, Ugur MB, Bayazıt YA, Gokdogan C, Goksu N (2015) Effects of polylactic acid film on middle ear mucosa and cochlear function in Guinea pigs. Eur Arch Otorhinolaryngol 272:1091–1097CrossRefPubMedGoogle Scholar
  39. Feng L, Qi XR, Zhou XJ, Maitani Y, Wang SC, Jiang Y, Nagai T (2006) Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres. J Control Release 112:35–42CrossRefPubMedGoogle Scholar
  40. Feng T, Tian H, Xu C, Lin L, Xie Z, Lam MH-W, Liang H, Chen X (2014) Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm 88:1086–1093CrossRefPubMedGoogle Scholar
  41. Frank A, Rath SK, Venkatraman SS (2005) Controlled release from bioerodible polymers: effect of drug type and polymer composition. J Control Release 102:333–344CrossRefPubMedGoogle Scholar
  42. Frede A, Neuhaus B, Klopfleisch R, Walker C, Buer J, Mueller W, Epple M, Westendorf AM (2016) Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Control Release 222:86–96CrossRefPubMedGoogle Scholar
  43. Gajjar CR, King MW (2014) Degradation process. Resorbable fiber-forming polymers for biotextile applications. Springer, New YorkGoogle Scholar
  44. Galloway CJ, Dean GE, Marsh M, Rudnick G, Mellman I (1983) Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc Natl Acad Sci 80:3334–3338CrossRefPubMedGoogle Scholar
  45. Gao D-Y, Lin T-T, Sung Y-C, Liu YC, Chiang W-H, Chang C-C, Liu J-Y, Chen Y (2015) CXCR45-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials 67:194–203CrossRefPubMedGoogle Scholar
  46. Gaspar MC, Pais AA, Sousa JJ, Brillaut J, Olivier J-C (2019) Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm 556:117–124CrossRefPubMedGoogle Scholar
  47. Gentile P, Chiono V, Carmagnola I, Hatton P (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659CrossRefPubMedPubMedCentralGoogle Scholar
  48. Getts DR, Terry RL, Getts MT, Deffrasnes C, Müller M, van Vreden C, Ashhurst TM, Chami B, McCarthy D, Wu H (2014) Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6:219ra7CrossRefPubMedPubMedCentralGoogle Scholar
  49. Giannouli M, Karagkiozaki V, Pappa F, Moutsios I, Gravalidis C, Logothetidis S (2018) Fabrication of quercetin-loaded PLGA nanoparticles via electrohydrodynamic atomization for cardiovascular disease. Mater Today Proc 5:15998–16005CrossRefGoogle Scholar
  50. Giunchedi P, Conti B, Scalia S, Conte U (1998) In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Release 56:53–62CrossRefPubMedGoogle Scholar
  51. Gomes dos Reis L, Lee W-H, Svolos M, Moir L, Jaber R, Windhab N, Young P, Traini D (2019) Nanotoxicologic effects of PLGA nanoparticles formulated with a cell-penetrating peptide: searching for a safe pDNA delivery system for the lungs. Pharmaceutics 11:12CrossRefPubMedCentralGoogle Scholar
  52. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114CrossRefPubMedGoogle Scholar
  53. Gorrasi G, Pantani R (2013) Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98:1006–1014CrossRefGoogle Scholar
  54. Goudarzi F, Asadi A, Afsharpour M, Jamadi RH (2018) In vitro characterization and evaluation of the cytotoxicity effects of nisin and nisin-loaded PLA-PEG-PLA nanoparticles on gastrointestinal (AGS and KYSE-30), hepatic (HepG2) and blood (K562) cancer cell lines. AAPS PharmSciTech 19:1554–1566CrossRefPubMedGoogle Scholar
  55. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller R (2000) ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313CrossRefGoogle Scholar
  56. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gwak S-J, Yun Y, Kim KN, Ha Y (2016) Therapeutic use of 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol-modified PLGA nanospheres as gene delivery vehicles for spinal cord injury. PLoS ONE 11:e0147389CrossRefPubMedPubMedCentralGoogle Scholar
  58. Haggag YA, Matchett KB, Falconer RA, Isreb M, Jones J, Faheem A, McCarron P, El-Tanani M (2019) Novel ran-RCC1 inhibitory peptide-loaded nanoparticles have anti-cancer efficacy in vitro and in vivo. Cancers 11:222CrossRefPubMedCentralGoogle Scholar
  59. Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63:943–955CrossRefPubMedGoogle Scholar
  60. Hanna LA, Basalious EB, ELGazayerly ON (2017) Respirable controlled release polymeric colloid (RCRPC) of bosentan for the management of pulmonary hypertension: in vitro aerosolization, histological examination and in vivo pulmonary absorption. Drug Delivery 24:188–198CrossRefGoogle Scholar
  61. Heo MB, Cho MY, Lim YT (2014) Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta Biomater 10:2169–2176CrossRefPubMedGoogle Scholar
  62. Hirota K, Doty AC, Ackermann R, Zhou J, Olsen KF, Feng MR, Wang Y, Choi S, Qu W, Schwendeman AS (2016) Characterizing release mechanisms of leuprolide acetate-loaded PLGA microspheres for IVIVC development I: in vitro evaluation. J Control Release 244:302–313CrossRefPubMedGoogle Scholar
  63. Hu C-MJ, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83:1104–1111CrossRefPubMedGoogle Scholar
  64. Huang S-S, Li I-H, Po-da Hong M-KY (2014) Development of yersinia pestis F1 antigen-loaded microspheres vaccine against plague. Int J Nanomed 9:813Google Scholar
  65. Hughes GA (2017) Nanostructure-mediated drug delivery. In: Balogh LP (ed) Nanomedicine in cancer. Pan Stanford Publishing, Singapore, pp 47–72Google Scholar
  66. Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Therap Drug Carr Syst 28:1–45CrossRefGoogle Scholar
  67. Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL (2015) Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery. Int J Nanomed 10:7183CrossRefGoogle Scholar
  68. Jain DS, Bajaj AN, Athawale RB, Shikhande SS, Pandey A, Goel PN, Gude RP, Patil S, Raut P (2016) Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater Sci Eng, C 63:411–421CrossRefGoogle Scholar
  69. Jiang T, Singh B, Li H-S, Kim Y-K, Kang S-K, Nah J-W, Choi Y-J, Cho C-S (2014) Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 35:2365–2373CrossRefPubMedGoogle Scholar
  70. Jose S, Sowmya S, Cinu T, Aleykutty N, Thomas S, Souto E (2014) Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur J Pharm Sci 63:29–35CrossRefPubMedGoogle Scholar
  71. Juturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36:967–977CrossRefPubMedGoogle Scholar
  72. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kanchan V, Panda AK (2007) Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28:5344–5357CrossRefPubMedGoogle Scholar
  74. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S (2015) PLGA: a unique polymer for drug delivery. Therap Deliv 6:41–58CrossRefGoogle Scholar
  75. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kasyapi N, Mehta R, Bhowmick AK (2015) Raman and NMR spectroscopic studies on hydrolytic degradation of d,l-lactide-δ-valerolactone-d,l-lactide copolymer. ACS Sustain Chem Eng 3:1381–1393CrossRefGoogle Scholar
  77. Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O’hagan DT (2006) Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 110:566–573CrossRefPubMedGoogle Scholar
  78. Keles H, Naylor A, Clegg F, Sammon C (2015) Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym Degrad Stab 119:228–241CrossRefGoogle Scholar
  79. Kim H, Lee J, Kim TH, Lee ES, Oh KT, Lee DH, Park E-S, Bae YH, Lee KC, Youn YS (2011) Albumin-coated porous hollow poly (lactic-co-glycolic acid) microparticles bound with palmityl-acylated exendin-4 as a long-acting inhalation delivery system for the treatment of diabetes. Pharm Res 28:2008–2019CrossRefPubMedGoogle Scholar
  80. Kim HJ, Park JS, Yi SW, Oh HJ, Kim J-H, Park K-H (2018) Sequential transfection of RUNX2/SP7 and ATF4 coated onto dexamethasone-loaded nanospheresenhances osteogenesis. Sci Rep 8:1447CrossRefPubMedPubMedCentralGoogle Scholar
  81. Koivistoinen OM, Kuivanen J, Barth D, Turkia H, Pitkänen J-P, Penttilä M, Richard P (2013) Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb Cell Fact 12:82CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kolte A, Patil S, Lesimple P, Hanrahan JW, Misra A (2017) PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int J Pharm 524:382–396CrossRefPubMedGoogle Scholar
  83. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396CrossRefPubMedGoogle Scholar
  84. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75:1–18CrossRefGoogle Scholar
  85. KyungáKim Y (2016) Biomolecular strategies to modulate the macrophage response to implanted materials. J Mater Chem B 4:1600–1609CrossRefGoogle Scholar
  86. Lächelt U, Wagner E (2015) Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 115:11043–11078. CrossRefPubMedGoogle Scholar
  87. Lee BK, Yun Y, Park K (2016) PLA micro-and nano-particles. Adv Drug Deliv Rev 107:176–191CrossRefPubMedPubMedCentralGoogle Scholar
  88. Leroy A, Ribeiro S, Grossiord C, Alves A, Vestberg RH, Salles V, Brunon C, Gritsch K, Grosgogeat B, Bayon Y (2017) FTIR microscopy contribution for comprehension of degradation mechanisms in PLA-based implantable medical devices. J Mater Sci Mater Med 28:87CrossRefPubMedGoogle Scholar
  89. Lewitus DY, Smith KL, Shain W, Bolikal D, Kohn J (2011) The fate of ultrafast degrading polymeric implants in the brain. Biomaterials 32:5543–5550CrossRefPubMedPubMedCentralGoogle Scholar
  90. Liu R, Huang S-S, Wan Y-H, Ma G-H, Su Z-G (2006) Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf B 51:30–38CrossRefGoogle Scholar
  91. Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341CrossRefPubMedPubMedCentralGoogle Scholar
  92. Luten J, van Nostrum CF, De Smedt SC, Hennink WE (2008) Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release 126:97–110CrossRefPubMedGoogle Scholar
  93. Luzardo-Alvarez A, Blarer N, Peter K, Romero JF, Reymond C, Corradin G, Gander B (2005) Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J Control Release 109:62–76CrossRefPubMedGoogle Scholar
  94. Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10:4033–4065CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J Nanobiotechnol 9:55CrossRefGoogle Scholar
  96. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397CrossRefPubMedPubMedCentralGoogle Scholar
  97. Mansor MH, Najberg M, Contini A, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F (2018) Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur J Pharm Biopharm 125:38–50CrossRefGoogle Scholar
  98. Marchany MD, Gardella JA Jr, Kuchera TJ (2015) Time of flight secondary ion mass spectrometry surface and in-depth study of degradation of nanosheet poly (l-lactic acid) films. Biointerphases 10:019010CrossRefPubMedGoogle Scholar
  99. Martins C, Sousa F, Araújo F, Sarmento B (2018) Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater 7:1701035CrossRefGoogle Scholar
  100. Matta J, Maalouf R (2019) Delivery of siRNA therapeutics: PLGA nanoparticles approach. Front Biosci (Scholar edn) 11:56–74CrossRefGoogle Scholar
  101. Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, Wu Z, Sun K (2018) Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomed 13:705CrossRefGoogle Scholar
  102. Mir M, Ahmed N, ur Rehman A (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B 159:217–231CrossRefGoogle Scholar
  103. Mitchell MK, Hirt DE (2015) Degradation of PLA fibers at elevated temperature and humidity. Polym Eng Sci 55:1652–1660CrossRefGoogle Scholar
  104. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318PubMedGoogle Scholar
  105. Mohammadi-Samani S, Taghipour B (2015) PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol 20:385–393CrossRefPubMedGoogle Scholar
  106. Mok H, Park TG (2008) Direct plasmid DNA encapsulation within PLGA nanospheres by single oil-in-water emulsion method. Eur J Pharm Biopharm 68:105–111CrossRefPubMedGoogle Scholar
  107. Müller AJ, Arnal ML, Lorenzo AT (2013) Crystallization in nano-confined polymeric systems. In: Piorkowska E, Rutledge GC (eds) Handbook of polymer crystallization. Wiley, New YorkGoogle Scholar
  108. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly (d,l-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209CrossRefPubMedGoogle Scholar
  109. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351CrossRefPubMedGoogle Scholar
  110. Newman KD, Elamanchili P, Kwon GS, Samuel J (2002) Uptake of poly (d,l-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J Biomed Mater Res 60:480–486CrossRefPubMedGoogle Scholar
  111. Ni R, Muenster U, Zhao J, Zhang L, Becker-Pelster E-M, Rosenbruch M, Mao S (2017) Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: in vitro and in vivo characterization. J Control Release 249:11–22CrossRefPubMedGoogle Scholar
  112. Nishio H, Masumoto H, Sakamoto K, Yamazaki K, Ikeda T, Minatoya K (2018) MicroRNA-145-loaded poly (lactic-co-glycolic acid) nanoparticles attenuate venous intimal hyperplasia in a rabbit model. J Thorac Cardiovasc Surg. CrossRefPubMedGoogle Scholar
  113. Oyewumi MO, Kumar A, Cui Z (2010) Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 9:1095–1107CrossRefPubMedPubMedCentralGoogle Scholar
  114. Pascual-Gil S, Simón-Yarza T, Garbayo E, Prosper F, Blanco-Prieto M (2015) Tracking the in vivo release of bioactive NRG from PLGA and PEG–PLGA microparticles in infarcted hearts. J Control Release 220:388–396CrossRefPubMedGoogle Scholar
  115. Patel BK, Parikh RH, Patel N (2018) Targeted delivery of mannosylated-PLGA nanoparticles of antiretroviral drug to brain. Int J Nanomed 13:97CrossRefGoogle Scholar
  116. Pinzon-Charry A, Ho C, Maxwell T, McGuckin M, Schmidt C, Furnival C, Pyke C, Lopez J (2007) Numerical and functional defects of blood dendritic cells in early-and late-stage breast cancer. Br J Cancer 97:1251CrossRefPubMedPubMedCentralGoogle Scholar
  117. Priemel PA, Wang Y, Bohr A, Water JJ, Yang M, Mørck Nielsen H (2018) Poly (ethylene carbonate)-containing polylactic acid microparticles with rifampicin improve drug delivery to macrophages. J Pharm Pharmacol 70:1009–1021CrossRefPubMedGoogle Scholar
  118. Qian X, Long L, Shi Z, Liu C, Qiu M, Sheng J, Pu P, Yuan X, Ren Y, Kang C (2014) Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials 35:2322–2335CrossRefPubMedGoogle Scholar
  119. Ramot Y, Touitou D, Levin G, Ickowicz DE, Zada MH, Abbas R, Yankelson L, Domb AJ, Nyska A (2015) Interspecies differences in reaction to a biodegradable subcutaneous tissue filler: severe inflammatory granulomatous reaction in the Sinclair minipig. Toxicol Pathol 43:267–271CrossRefPubMedGoogle Scholar
  120. Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162CrossRefPubMedGoogle Scholar
  121. Reis CP, Neufeld RJ, Veiga F (2017) Preparation of drug-loaded polymeric nanoparticles. In: Balogh LP (ed) Nanomedicine in cancer. Pan Stanford, Singapore, pp 197–240Google Scholar
  122. Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93CrossRefPubMedPubMedCentralGoogle Scholar
  123. Rodriguez EJ, Marcos B, Huneault MA (2016) Hydrolysis of polylactide in aqueous media. J Appl Polym Sci. CrossRefGoogle Scholar
  124. Rong X, Yuan W, Lu Y, Mo X (2014) Safety evaluation of poly (lactic-co-glycolic acid)/poly (lactic-acid) microspheres through intravitreal injection in rabbits. Int J Nanomed 9:3057CrossRefGoogle Scholar
  125. Ronneberger B, Kao WJ, Anderson JM, Kissel T (1996) In vivo biocompatibility study of ABA triblock copolymers consisting of poly(l-lactic-co-glycolic acid) A blocks attached to central poly (oxyethylene) B blocks. J Biomed Mater Res 30:31–40CrossRefPubMedGoogle Scholar
  126. Rosas J, Hernandez R, Gascon A, Igartua M, Guzman F, Patarroyo M, Pedraz J (2001) Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 19:4445–4451CrossRefPubMedGoogle Scholar
  127. Saini V, Jain V, Sudheesh M, Jaganathan K, Murthy P, Kohli D (2011) Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen. Int J Pharm 408:50–57CrossRefPubMedGoogle Scholar
  128. Saini V, Verma AK, Kushwaha V, Joseph SK, Kalpna Murthy P, Kohli D (2014) Humoral and cell-mediated immune responses elicited by poly (d,l-lactide) adjuvanted filarial antigen molecules. Drug Deliv 21:233–241CrossRefPubMedGoogle Scholar
  129. Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL (2014) Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomed 9:5231Google Scholar
  130. Salvador A, Igartua M, Hernández RM, Pedraz JL (2012) Combination of immune stimulating adjuvants with poly (lactide-co-glycolide) microspheres enhances the immune response of vaccines. Vaccine 30:589–596CrossRefPubMedGoogle Scholar
  131. Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M (2008) TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26:1626–1637CrossRefPubMedGoogle Scholar
  132. Seth A, Lee H, Cho MY, Park C, Korm S, Lee J-Y, Choi I, Lim YT, Hong KS (2017) Combining vasculature disrupting agent and toll-like receptor 7/8 agonist for cancer therapy. Oncotarget 8:5371CrossRefPubMedGoogle Scholar
  133. Shao M, Zhu W, Lv X, Yang Q, Liu X, Xie Y, Tang P, Sun L (2018) encapsulation of chloroquine and doxorubicin by MPeg-Pla to enhance anticancer effects by lysosomes inhibition in ovarian cancer. Int J Nanomed 13:8231CrossRefGoogle Scholar
  134. Sharma S, Parmar A, Kori S, Sandhir R (2016) PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC, Trends Anal Chem 80:30–40CrossRefGoogle Scholar
  135. Shi S, Hickey AJ (2010) PLGA microparticles in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen TB10.4-Ag85B. Pharm Res 27:350–360CrossRefPubMedGoogle Scholar
  136. Silva ATCR, Cardoso BCO, e Silva MESR, Freitas RFS, Sousa RG (2015) Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J Biomater Nanobiotechnol 6:8CrossRefGoogle Scholar
  137. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364Google Scholar
  138. Tačić A, Ristić IS, Ilić D, Vesna N, Nikolić L, Snežana I-S (2017) Polymeric matrix systems for drug delivery, drug delivery approaches and nanosystems, vol 1. Apple Academic Press, Waretown, NJ, pp 95–131Google Scholar
  139. Taha MA, Singh SR, Dennis VA (2012) Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnology 23:325101CrossRefPubMedGoogle Scholar
  140. Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y (2011) Improvements in transfection efficiency with chitosan modified poly (dl-lactide-co-glycolide) nanospheres prepared by the emulsion solvent diffusion method, for gene delivery. Chem Pharm Bull 59:298–301CrossRefPubMedGoogle Scholar
  141. Takami T, Murakami Y (2011) Development of PEG–PLA/PLGA microparticles for pulmonary drug delivery prepared by a novel emulsification technique assisted with amphiphilic block copolymers. Colloids Surf B 87:433–438CrossRefGoogle Scholar
  142. Tam HH, Melo MB, Kang M, Pelet JM, Ruda VM, Foley MH, Hu JK, Kumari S, Crampton J, Baldeon AD (2016) Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci 113:E6639–E6648CrossRefPubMedGoogle Scholar
  143. Terry TL, Givens BE, Rodgers VG, Salem AK (2019) Tunable properties of poly-dl-lactide-monomethoxypolyethylene glycol porous microparticles for sustained release of polyethylenimine-DNA polyplexes. AAPS PharmSciTech 20:23CrossRefPubMedGoogle Scholar
  144. Tesfamariam B (2016) Bioresorbable vascular scaffolds: biodegradation, drug delivery and vascular remodeling. Pharmacol Res 107:163–171CrossRefPubMedGoogle Scholar
  145. Thanki K, Zeng X, Justesen S, Tejlmann S, Falkenberg E, Van Driessche E, Nielsen HM, Franzyk H, Foged C (2017) Engineering of small interfering RNA-loaded lipidoid-poly (dl-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: a quality by design-based approach. Eur J Pharm Biopharm 120:22–33CrossRefPubMedGoogle Scholar
  146. Turek A, Kasperczyk J, Jelonek K, Borecka A, Janeczek H, Libera M, Gruchlik A, Dobrzyński P (2015) Thermal properties and morphology changes in degradation process of poly (l-lactide-co-glycolide) matrices with risperidone. Acta Bioeng Biomech 17:11–20PubMedGoogle Scholar
  147. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175CrossRefPubMedGoogle Scholar
  148. Tzeng SY, McHugh KJ, Behrens AM, Rose S, Sugarman JL, Ferber S, Langer R, Jaklenec A (2018) Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc Natl Acad Sci 115:E5269–E5278CrossRefPubMedGoogle Scholar
  149. von Burkersroda F, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231CrossRefGoogle Scholar
  150. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344CrossRefPubMedCentralGoogle Scholar
  151. Waeckerle-Men Y, Groettrup M (2005) PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 57:475–482CrossRefPubMedGoogle Scholar
  152. Wang N, Qiu J, Wu X (1998) Tailored polymeric materials for controlled delivery systems. ACS symposium series. ACS Publication, WashingtonGoogle Scholar
  153. Widmer J, Thauvin C, Mottas I, Nguyen VN, Delie F, Allémann E, Bourquin C (2018) Polymer-based nanoparticles loaded with a TLR7 ligand to target the lymph node for immunostimulation. Int J Pharm 535:444–451CrossRefPubMedGoogle Scholar
  154. Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert H-H, Peters JH, Nesselhut T, Lorenzen DR (2009) Poly (I: C) coated PLGA microparticles induce dendritic cell maturation. Int J Pharm 365:61–68CrossRefPubMedGoogle Scholar
  155. Wong JKL, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM (2017) Will nanotechnology bring new hope for gene delivery? Trends Biotechnol 35:434–451. CrossRefPubMedGoogle Scholar
  156. Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, Song Q, Yao L, Pang Z, Jiang X (2012) Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. Int J Pharm 436:840–850CrossRefPubMedGoogle Scholar
  157. Xiao Y, Shi K, Qu Y, Chu B, Qian Z (2019) Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol Therapy Methods Clin Dev 12:1–18. CrossRefGoogle Scholar
  158. Xiong Y, Yu Z, Lang Y, Hu J, Li H, Yan Y, Tu C, Yang T, Song Y, Duan H (2016) In vitro stress effect on degradation and drug release behaviors of basic fibroblast growth factor–poly (lactic-co-glycolic-acid) microsphere. Drug Design Dev Therapy 10:431CrossRefGoogle Scholar
  159. Xu G, Zhang N (2009) Nanoparticles for gene delivery: a brief patent review. Recent Pat Drug Deliv Formul 3:125–136CrossRefPubMedGoogle Scholar
  160. Xu Y, Kim CS, Saylor DM, Koo D (2017) Polymer degradation and drug delivery in PLGA-based drug–polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater 105:1692–1716CrossRefPubMedGoogle Scholar
  161. Xu Z, Wang D, Cheng Y, Yang M, Wu L-P (2018) Polyester based nanovehicles for siRNA delivery. Mater Sci Eng, C 92:1006–1015CrossRefGoogle Scholar
  162. Yan Y, Such GK, Johnston AP, Best JP, Caruso F (2012) Engineering particles for therapeutic delivery: prospects and challenges. ACS Nano 6:3663–3669CrossRefPubMedGoogle Scholar
  163. Yasar H, Biehl A, De Rossi C, Koch M, Murgia X, Loretz B, Lehr C-M (2018) Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles. J Nanobiotechnol 16:72CrossRefGoogle Scholar
  164. Yoo JY, Kim JM, Seo KS, Jeong YK, Lee HB, Khang G (2005) Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Bio-Med Mater Eng 15:279–288Google Scholar
  165. Yoo J-W, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307CrossRefPubMedGoogle Scholar
  166. Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32:3666–3678CrossRefPubMedGoogle Scholar
  167. Zhao Z-X, Gao S-Y, Wang J-C, Chen C-J, Zhao E-Y, Hou W-J, Feng Q, Gao L-Y, Liu X-Y, Zhang L-R (2012) Self-assembly nanomicelles based on cationic mPEG-PLA-b-polyarginine (R15) triblock copolymer for siRNA delivery. Biomaterials 33:6793–6807CrossRefPubMedGoogle Scholar
  168. Zhao W, Zhang C, Li B, Zhang X, Luo X, Zeng C, Li W, Gao M, Dong Y (2018) Lipid polymer hybrid nanomaterials for mRNA delivery. Cell Mol Bioeng 11:397–406CrossRefPubMedGoogle Scholar
  169. Zheng S, Li Luo RB, Liu Z, Xing J, Niu Y, Hu Y, Liu J, Wang D (2016) Evaluation of optimum conditions for pachyman encapsulated in poly (d,l-lactic acid) nanospheres by response surface methodology and results of a related in vitro study. Int J Nanomed 11:4891CrossRefGoogle Scholar
  170. Zhou S, Deng X (2002) In vitro degradation characteristics of poly-dl-lactide–poly (ethylene glycol) microspheres containing human serum albumin. React Funct Polym 51:93–100CrossRefGoogle Scholar
  171. Zhu X, Xu Y, Solis LM, Tao W, Wang L, Behrens C, Xu X, Zhao L, Liu D, Wu J (2015) Long-circulating siRNA nanoparticles for validating prohibitin1-targeted non-small cell lung cancer treatment. Proc Natl Acad Sci 112:7779–7784CrossRefPubMedGoogle Scholar
  172. Zhu D, Tao W, Zhang H, Liu G, Wang T, Zhang L, Zeng X, Mei L (2016) Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–154CrossRefPubMedGoogle Scholar
  173. Zolnik BS, Burgess DJ (2007) Effect of acidic pH on PLGA microsphere degradation and release. J Control Release 122:338–344CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2019

Authors and Affiliations

  • Enas M. Elmowafy
    • 1
    Email author
  • Mattia Tiboni
    • 2
  • Mahmoud E. Soliman
    • 1
  1. 1.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyAin Shams UniversityCairoEgypt
  2. 2.Department of Biomolecular Sciences, School of PharmacyUniversity of UrbinoUrbinoItaly

Personalised recommendations