Journal of Pharmaceutical Investigation

, Volume 49, Issue 1, pp 9–15 | Cite as

Recent advances in intra-articular drug delivery systems to extend drug retention in joint

  • Myoung Jin Ho
  • Sung Rae Kim
  • Young Wook Choi
  • Myung Joo KangEmail author


Intra-articular (IA) administration of therapeutic agents has been employed to selectively deliver active compounds at their site of action for the treatment of chronic joint diseases such as osteoarthritis, rheumatoid arthritis, and joint pain. Direct IA delivery of active compounds to local tissues occasionally provides improved therapeutic outcomes with reduced dose, while minimizing systemic exposure and undesirable adverse effects. However, many small drugs (< 10,000 Da) administered intra-articularly, tend to be rapidly effluxed from the synovium into the blood stream, thus requiring frequent IA injection. To date, different pharmaceutical approaches have been investigated, including polymer and/or lipid-based nanoparticles (NPs), microparticles (MPs), conventional and/or thermo-responsive hydrogels, drug suspension, and oily depot systems, to prolong the drug retention time in the joint, thus improving the pharmacokinetic profile and/or the therapeutic efficacy of active compounds. Herein, we have summarized the recent research trends on IA delivery systems with a focus on NPs, MPs, and hydrogel system, which have been studied most extensively to achieve extended retention time following IA injection.


Intra-articular drug delivery Nanoparticles Microparticles Hydrogels Prolonged release Joints 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2016R1C1B1010687).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. Abd-Allah H, Kamel AO, Sammour OA (2016) Injectable long acting chitosan/tripolyphosphate microspheres for the intra-articular delivery of lornoxicam: optimization and in vivo evaluation. Carbohydr Polym 149:263–273CrossRefGoogle Scholar
  2. Ayral X (2001) Injections in the treatment of osteoarthritis. Best Pract Res Clin Rheumatol 15:609–626CrossRefGoogle Scholar
  3. Betre H, Liu W, Zalutsky MR, Chilkoti A, Kraus VB, Setton LA (2006) A thermally responsive biopolymer for intra-articular drug delivery. J Control Release 115:175–182CrossRefGoogle Scholar
  4. Bodick N, Lufkin J, Willwerth C, Kumar A, Bolognese J, Schoonmaker C, Ballal R, Hunter D, Clayman M (2015) An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J Bone Joint Surg Am 97:877–888CrossRefGoogle Scholar
  5. Bonanomi MH, Velvart M, Stimpel M, Roos KM, Fehr K, Weder HG (1987) Studies of pharmacokinetics and therapeutic effects of glucocorticoids entrapped in liposomes after intraarticular application in healthy rabbits and in rabbits with antigen-induced arthritis. Rheumatol Int 7:203–212CrossRefGoogle Scholar
  6. Brown S, Pistiner J, Adjei I, Sharma B (2017) Nanoparticle properties for delivery to cartilage: the implications of disease state, synovial fluid, and off-target uptake. Mol Pharm.
  7. Burt HM, Tsallas A, Gilchrist S, Liang LS (2009) Intra-articular drug delivery systems: overcoming the shortcomings of joint disease therapy. Expert Opin Drug Deliv 6:17–26CrossRefGoogle Scholar
  8. Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–1821CrossRefGoogle Scholar
  9. Chen ZP, Liu W, Liu D, Xiao YY, Chen HX, Chen J, Li W, Cai H, Li W, Cai BC, Pan J (2012) Development of brucine-loaded microsphere/thermally responsive hydrogel combination system for intra-articular administration. J Control Release 162:628–635CrossRefGoogle Scholar
  10. Comper WD (1991) Physicochemical aspects of cartilage extracellular matrix. In: Hall B, Newman S (eds) Cartilage: molecular aspects. CRC Press, Boston, pp 59–96Google Scholar
  11. Edwards SH (2011) Intra-articular drug delivery: the challenge to extend drug residence time within the joint. Vet J 190:15–21CrossRefGoogle Scholar
  12. Gerwin N, Hops C, Lucke A (2006) Intraarticular drug delivery in osteoarthritis. Adv Drug Del Rev 58:226–242CrossRefGoogle Scholar
  13. Hirota K, Hasegawa T, Hinata H, Ito F, Inagawa H, Kochi C, Soma G, Makino K, Terada H (2007) Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release 119:69–76CrossRefGoogle Scholar
  14. Hunter TM, Boytsov NN, Zhang X, Schroeder K, Michaud K, Araujo AB (2017) Prevalence of rheumatoid arthritis in the United States adult population in healthcare claims databases, 2004–2014. Rheumatol Int 37:1551–1557Google Scholar
  15. Janssen M, Timur UT, Woike N, Welting TJ, Draaisma G, Gijbels M, van Rhijn LW, Mihov G, Thies J, Emans PJ (2016) Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intraarticular injection. J Control Release 244:30–40CrossRefGoogle Scholar
  16. Kang ML, Ko JY, Kim JE, Im GI (2014) Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. Biomaterials 35:9984–9994CrossRefGoogle Scholar
  17. Kang ML, Kim JE, Im GI (2016) Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomater 39:65–78CrossRefGoogle Scholar
  18. Kim SR, Ho MJ, Lee E, Lee JW, Choi YW, Kang MJ (2015) Cationic PLGA/Eudragit RL nanoparticles for increasing retention time in synovial cavity after intra-articular injection in knee joint. Int J Nanomed 10:5263–5271Google Scholar
  19. Kim SR, Ho MJ, Kim SH, Cho HR, Kim HS, Choi YS, Choi YW, Kang MJ (2016) Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection. Drug Des Devel Ther 10:3779–3787CrossRefGoogle Scholar
  20. Knight AD, Levick JR (1984) Morphometry of the ultrastructure of the blood-joint barrier in the rabbit knee. Q J Exp Physiol 69:271–288CrossRefGoogle Scholar
  21. Kraus VB, Conaghan PG, Aazami HA, Mehra P, Kivitz AJ, Lufkin J, Hauben J, Johnson JR, Bodick N (2017) Synovial and systemic pharmacokinetics of triamcinolone acetonide following intra-articular injection of an extended release formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis. Osteoarthr Cartil 26:34–42Google Scholar
  22. Kumar A, Bendele AM, Blanks RC, Bodick N (2015) Sustained efficacy of a single intra-articular dose of FX006 in a rat model of repeated localized knee arthritis. Osteoarthr Cartil 23:151–160CrossRefGoogle Scholar
  23. Larsen C, Ostergaard J, Larsen SW, Jensen H, Jacobsen S, Lindegaard C, Andersen PH (2008) Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci 97:4622–4654CrossRefGoogle Scholar
  24. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35CrossRefGoogle Scholar
  25. Levick JR (1998) A method for estimating macromolecular reflection by human synovium, using measurements of intra-articular half lives. Ann Rheum Dis 57:339–344CrossRefGoogle Scholar
  26. Martini FH (2006) Fundamentals of anatomy and physiology: international edition (7th edn). Pearson Education, Inc., New YorkGoogle Scholar
  27. Matsuzaki T, Matsushita T, Tabata Y, Saito T, Matsumoto T, Nagai K, Kuroda R, Kurosaka M (2014) Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials 35:9904–9911CrossRefGoogle Scholar
  28. Morgen M, Tung D, Boras B, Miller W, Malfait AM, Tortorella M (2013) Nanoparticles for improved local retention after intra-articular injection into the knee joint. Pharm Res 30:257–268CrossRefGoogle Scholar
  29. Muller-Ladner U, Gay RE, Gay S (1997) Cellular pathways of joint destruction. Curr Opin Rheumatol 9:213–220CrossRefGoogle Scholar
  30. Mwangi TK, Bowles RD, Tainter DM, Bell RD, Kaplan DL, Setton LA (2015) Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. Int J Pharm 485:7–14CrossRefGoogle Scholar
  31. Neander G, Eriksson LO, Wållin-Boll E, Ersmark H, Grahnen A (1992) Pharmacokinetics of intraarticular indomethacin in patients with osteoarthritis. Eur J Clin Pharmacol 42:301–305CrossRefGoogle Scholar
  32. Onodera S, Suzuki K, Matsuno T, Kaneda K, Takagi M, Nishihira J (1997) Macrophage migration inhibitory factor induces phagocytosis of foreign particles by macrophages in autocrine and paracrine fashion. Immunology 92:131–137CrossRefGoogle Scholar
  33. Owen SG, Francis HW, Roberts MS (1994) Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br J Clin Pharmacol 38:349–355CrossRefGoogle Scholar
  34. Park CW, Ma KW, Jang SW, Son M, Kang MJ (2014) Comparison of piroxicam pharmacokinetics and anti-inflammatory effect in rats after intra-articular and intramuscular administration. Biomol Ther 22:260–266CrossRefGoogle Scholar
  35. Perni S, Prokopovich P (2017) Poly-beta-amino-esters nano-vehicles based drug delivery system for cartilage. Nanomedicine 13:539–548CrossRefGoogle Scholar
  36. Petit A, Sandker M, Müller B, Meyboom R, van Midwoud P, Bruin P, Redout EM, Versluijs-Helder M, van der Lest CH, Buwalda SJ, de Leede LG, Vermonden T, Kok RJ, Weinans H, Hennink WE (2014) Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA–PEG–PCLA thermogels. Biomaterials 35:7919–7928CrossRefGoogle Scholar
  37. Petit A, Redout EM, van de Lest CH, de Grauw JC, Müller B, Meyboom R, van Midwoud P, Vermonden T, Hennink WE, René van Weeren P (2015) Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA–PEG–PCLA triblock copolymers in horses. Biomaterials 53:426–436CrossRefGoogle Scholar
  38. Pradal J, Maudens P, Gabay C, Seemayer CA, Jordan O, Allémann E (2016) Effect of particle size on the biodistribution of nano- and microparticles following intra-articular injection in mice. Int J Pharm 498:119–129CrossRefGoogle Scholar
  39. Rømsing J, Møiniche S, Ostergaard D, Dahl JB (2000) Local infiltration with NSAIDs for postoperative analgesia: evidence for a peripheral analgesic action. Acta Anaesthesiol Scand 44:672–683CrossRefGoogle Scholar
  40. Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA (2008) Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater 7:248–254CrossRefGoogle Scholar
  41. Sacchetti C, Liu-Bryan R, Magrini A, Rosato N, Bottini N, Bottini M (2014) Polyethylene–glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS Nano 8:12280–12291CrossRefGoogle Scholar
  42. Schurman DJ, Kajiyama G (1985) Antibiotic absorption from infected and normal joints using a rabbit knee joint model. J Orthop Res 3:185–188CrossRefGoogle Scholar
  43. Wigginton SM, Chu BC, Weisman MH, Howell SB (1980) Methotrexate pharmacokinetics after intraarticular injection in patients with rheumatoid arthritis. Arthritis Rheum 23:119–122CrossRefGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2018

Authors and Affiliations

  • Myoung Jin Ho
    • 1
  • Sung Rae Kim
    • 2
  • Young Wook Choi
    • 2
  • Myung Joo Kang
    • 1
    Email author
  1. 1.College of PharmacyDankook UniversityCheonanSouth Korea
  2. 2.College of PharmacyChung-Ang UniversitySeoulSouth Korea

Personalised recommendations