Advertisement

Journal of Pharmaceutical Investigation

, Volume 48, Issue 1, pp 113–134 | Cite as

Impact of nanomedicine on hepatic cytochrome P450 3A4 activity: things to consider during pre-clinical and clinical studies

  • Kristina Jonsson-Schmunk
  • Stephen C. Schafer
  • Maria A. Croyle
Review

Abstract

Hepatic cytochrome P450 3A4 (CYP3A4) is an important drug-metabolizing enzyme as it is responsible for metabolizing over 30% of currently marketed drugs across most therapeutic classes. CYP3A4 is regulated at various stages including transcriptional, post-transcriptional, translational and post-translational expression. Changes made at any of these stages of CYP3A4 regulation could result in fluctuations in CYP3A4 levels and/or activity. These alterations are important to understand as they could lead to drug–drug interactions, sub-therapeutic levels or toxic levels of pharmaceutical drugs. Nanomedicine, the use of nanotechnology for treatment, diagnosis and monitoring of biological systems, is a growing market. This includes use of viral vectors for gene transfer and vaccine applications and nanoparticles based on gold and silver for various applications. Both have shown to alter CYP3A4 activity and function. Hence, during pre-clinical and clinical studies it is important to elucidate any effect of nanomedicines on CYP3A4 to avoid unintended changes in maintenance of medications due to changes in drug metabolism.

Keywords

Cytochrome P450 3A4 Drug metabolism Liver Nanomedicine Nanoparticles Virus 

Notes

Compliance with ethical standards

Conflict of interest

These authors (Kristina Jonsson-Schmunk, Stephen C. Schafer, and Maria A. Croyle) declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human and animal subjects performed by any of the authors. All the studies are performed in accordance with the ethical standards by the principles of the Declaration of Helsinki.

Funding

This work is supported by the National Institutes of Health NIGMS Grant R21GM69870, NIAID Grant U01AI078045 (MAC), and a Special Research Grant from the VP of Research at the University of Texas at Austin (MAC). This research was also supported by a University of Texas at Austin Continuing Graduate School Fellowship (KJS).

References

  1. Aitken AE, Morgan ET (2007) Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos 35:1687–1693.  https://doi.org/10.1124/dmd.107.015511 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aitken AE, Richardson TA, Morgan ET (2006) Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 46:123–149.  https://doi.org/10.1146/annurev.pharmtox.46.120604.141059 PubMedCrossRefGoogle Scholar
  3. Alt V, Bechert T, Steinrücke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391.  https://doi.org/10.1016/j.biomaterials.2003.10.078 PubMedCrossRefGoogle Scholar
  4. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29.  https://doi.org/10.1002/btm2.10003 PubMedGoogle Scholar
  5. Aoyama T, Yamano S, Waxman DJ et al (1989) Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. J Biol Chem 264:10388–10395PubMedGoogle Scholar
  6. Assenat E, Gerbal-Chaloin S, Larrey D et al (2004) Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology 40:951–960.  https://doi.org/10.1002/hep.20387 PubMedCrossRefGoogle Scholar
  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  8. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 17:1–16.  https://doi.org/10.1016/j.gene.2003.12.005 CrossRefGoogle Scholar
  9. Beaune PH, Umbenhauer DR, Bork RW, Lloyd RS, Guengerich FP (1986) Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase. Proc Natl Acad Sci USA 83:8064–8068PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bejon P, Ogada E, Mwangi T et al (2007) Extended follow-up following a phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS One 2:e707.  https://doi.org/10.1371/journal.pone.0000707 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biggs JS, Wan J, Cutler NS, Hakkola J, Uusimäki P, Raunio H, Yost GS (2007) Transcription factor binding to a putative double E-box motif represses CYP3A4 expression in human lung cells. Mol Pharmacol 72:514–525.  https://doi.org/10.1124/mol.106.033795 PubMedCrossRefGoogle Scholar
  12. Blanco E, Haifa S, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951.  https://doi.org/10.1038/nbt.3330 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387.  https://doi.org/10.1007/s11095-016-1958-5 PubMedCrossRefGoogle Scholar
  14. Bombail V, Taylor K, Gibson GG, Plant N (2004) Role of Sp1, C/EBP alpha, HNF3, and PXR in the basal- and xenobiotic-mediated regulation of the CYP3A4 gene. Drug Metab Dispos 32:525–535.  https://doi.org/10.1124/dmd.32.5.525 PubMedCrossRefGoogle Scholar
  15. Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1.  https://doi.org/10.1186/1476-5926-1-1 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Braeuning A, Schwarz M (2010) beta-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. Biol Chem 391:139–148.  https://doi.org/10.1515/Bc.2010.012 PubMedGoogle Scholar
  17. Braeuning A, Sanna R, Huelsken J, Schwarz M (2009) Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos 37:1138–1145.  https://doi.org/10.1124/dmd.108.026179 PubMedCrossRefGoogle Scholar
  18. Braeuning A, Heubach Y, Knorpp T, Kowalik MA, Templin M, Columbano A, Schwarz M (2011) Gender-specific interplay of signaling through β-catenin and CAR in the regulation of xenobiotic-induced hepatocyte proliferation. Toxicol Sci 123:113–122.  https://doi.org/10.1093/toxsci/kfr166 PubMedCrossRefGoogle Scholar
  19. Callahan SM, Ming X, Lu SK, Brunner LJ, Croyle MA (2005) Considerations for use of recombinant adenoviral vectors: dose effect on hepatic cytochromes P450. J Pharmacol Exp Ther 312:492–501.  https://doi.org/10.1124/jpet.104.075374 PubMedCrossRefGoogle Scholar
  20. Callahan SM, Boquet MP, Ming X, Brunner LJ, Croyle MA (2006) Impact of transgene expression on drug metabolism following systemic adenoviral vector administration. J Gene Med 8:566–576.  https://doi.org/10.1002/jgm.884 PubMedCrossRefGoogle Scholar
  21. Callahan SM, Wonganan P, Croyle MA (2008) Molecular and macromolecular alterations of recombinant adenoviral vectors do not resolve changes in hepatic drug metabolism during infection. Virol J 30:111.  https://doi.org/10.1186/1743-422X-5-111 CrossRefGoogle Scholar
  22. Cha K, Hong HW, Choi YG et al (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 30:1893–1899.  https://doi.org/10.1007/s10529-008-9786-2 PubMedCrossRefGoogle Scholar
  23. Chan WM, Rahman MM, McFadden G (2013) Oncolytic myxoma virus: the path to clinic. Vaccine 31:4252–4258.  https://doi.org/10.1016/j.vaccine.2013.05.056 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356.  https://doi.org/10.1038/nature07413 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen M, Gerlier D (2006) Viral hijacking of cellular ubiquitination pathways as an anti-innate immunity strategy. Viral Immunol 19:349–362.  https://doi.org/10.1089/vim.2006.19.349 PubMedCrossRefGoogle Scholar
  26. Chen S, Wang K, Wan Y-J (2010) Retinoids activate RXR/CAR-mediated pathway and induce CYP3A. Biochem Pharmacol 79:270–276.  https://doi.org/10.1016/j.bcp.2009.08.012 PubMedCrossRefGoogle Scholar
  27. Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, Moore DD (1997) Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 272:23565–23571.  https://doi.org/10.1074/jbc.272.38.23565 PubMedCrossRefGoogle Scholar
  28. Choi E, Michalski CJ, Choo SH et al. (2016) First phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses. Retrovirology 13:82.  https://doi.org/10.1186/s12977-016-0317-2 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chow H-H, Tang Y, Li P, Fisher RL, Brendel K, Watson RR (1996) Increased resistance to acetaminophen-induced hepatotoxicity in retrovirus-infected mice. Biopharm Drug Dispos 17:661–674.  https://doi.org/10.1002/(SICI)1099-081X(199611)17:8<661::AID-BDD980>3.0.CO;2-C CrossRefGoogle Scholar
  30. Chow H-H, Tang Y, Li P, Brookshier G, Liang B, Watson R (1998) The effect of chronic retrovirus infection and immune dysfunction on the P-450-mediated activation of acetaminophen in mouse liver microsomes. Biopharm Drug Dispos 19:9–15PubMedCrossRefGoogle Scholar
  31. Conner KP, Woods C, Atkins WM (2011) Interactions of cytochrome P450s with their ligands. Arch Biochem Biophys 507:56–65.  https://doi.org/10.1016/j.abb.2010.10.006 PubMedCrossRefGoogle Scholar
  32. Croyle MA (2009) Long-term virus-induced alterations of CYP3A-mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi-faceted problem. Expert Opin Drug Metab Toxicol 5:1189–1211.  https://doi.org/10.1517/17425250903136748 PubMedCrossRefGoogle Scholar
  33. Daly AK (2006) Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 45:13–31.  https://doi.org/10.2165/00003088-200645010-00002 PubMedCrossRefGoogle Scholar
  34. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149CrossRefGoogle Scholar
  35. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539.  https://doi.org/10.1126/science.1222453 PubMedCrossRefGoogle Scholar
  36. Desvergne B (2007) RXR: from partnership to leadership in metabolic regulations. Vitam Horm 75:1–32.  https://doi.org/10.1016/S0083-6729(06)75001-4 PubMedCrossRefGoogle Scholar
  37. Ding X, Staudinger JL (2005) Repression of PXR-mediated induction of hepatic CYP3A gene expression by protein kinase C. Biochem Pharmacol 69:867–873.  https://doi.org/10.1016/j.bcp.2004.11.025 PubMedCrossRefGoogle Scholar
  38. Domanski TL, Finta C, Halpert JR, Zaphiropoulos PG (2001) cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 59:386–392.  https://doi.org/10.1124/mol.59.2.386 Google Scholar
  39. El-Sankary W, Bombail V, Gibson GG, Plant N (2002) Glucocorticoid-mediated induction of CYP3A4 is decreased by disruption of a protein: DNA interaction distinct from the pregnane X receptor response element. Drug Metab Dispos 30:1029–1034.  https://doi.org/10.1124/dmd.30.9.1029 PubMedCrossRefGoogle Scholar
  40. El-Sayed R, Bhattacharya K, Gu Z et al. (2016) Single-walled carbon nanotubes inhibit the cytochrome P450 enzyme, CYP3A4. Sci Rep 6:21316.  https://doi.org/10.1038/srep21316 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Estabrook RW, Hildebrandt AG, Baron J, Netter KJ, Leibman K (1971) A new spectral intermediate associated with cytochrome P-450 function in liver microsomes. Biochem Biophys Res Commun 42:132–139PubMedCrossRefGoogle Scholar
  42. Faouzi S, Medzihradszky KF, Hefner C, Maher JJ, Correia MA (2007) Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: a role for the cytosolic AAA ATPase p97? Biochemistry 46:7793–77803.  https://doi.org/10.1021/bi700340n PubMedPubMedCentralCrossRefGoogle Scholar
  43. Felekkis K, Touvana E, Stefanou CH, Deltas C (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14:236–240PubMedPubMedCentralGoogle Scholar
  44. Finta C, Zaphiropoulos PG (2000) The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene 260:13–23.  https://doi.org/10.1016/S0378-1119(00)00470-4 PubMedCrossRefGoogle Scholar
  45. Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R (2010) How does the reductase help to regulate the catalytic cycle of cytochrome P450 3A4 using the conserved water channel? J Phys Chem B 114:5964–5970.  https://doi.org/10.1021/jp101894k PubMedPubMedCentralCrossRefGoogle Scholar
  46. Friedman RC, Farh KK, Burge C, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome 19:92–105.  https://doi.org/10.1101/gr.082701.108 CrossRefGoogle Scholar
  47. Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber T (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242:326–332.  https://doi.org/10.1016/j.taap.2009.11.002 PubMedCrossRefGoogle Scholar
  48. Gandhi AS, Guo T, Shah P, Moorthy B, Chow DS-L, Hu M, Ghose R (2012) CYP3A-dependent drug metabolism is reduced in bacterial inflammation in mice. Br J Pharmacol 166:2176–2187.  https://doi.org/10.1111/j.1476-5381.2012.01933.x PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ganzenberg K, Singh Y, Braeuning A (2013) The time point of β-catenin knockout in hepatocytes determines their response to xenobiotic activation of the constitutive androstane receptor. Toxicology 308:113–121.  https://doi.org/10.1016/j.tox.2013.03.019 PubMedCrossRefGoogle Scholar
  50. Gellner K, Eiselt R, Hustert E et al (2001) Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 11:111–121PubMedCrossRefGoogle Scholar
  51. Ghose R, Zimmerman TL, Thevananther S, Karpen SJ (2004) Endotoxin leads to rapid subcellular re-localization of hepatic RXRα: a novel mechanism for reduced hepatic gene expression in inflammation. Nucl Recept 2:4.  https://doi.org/10.1186/1478-1336-2-4 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Girgis E, Khalil WK, Emam AN, Mohamed MB, Rao KV (2012) Nanotoxicity of gold and gold–cobalt nanoalloy. Chem Res Toxicol 25:1086–1098.  https://doi.org/10.1021/tx300053h PubMedCrossRefGoogle Scholar
  53. Gómez CE, Nájera JL, Perdiguero B et al (2011) The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens. J Virol 85:1468–1478.  https://doi.org/10.1128/JVI.05165-11 CrossRefGoogle Scholar
  54. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900.  https://doi.org/10.1021/bc049951i PubMedCrossRefGoogle Scholar
  55. Goodwin B, Hodgson E, Liddle C (1999) The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56:1329–1339PubMedGoogle Scholar
  56. Gorski J, Hall S, Becker P, Affrime M, Cutler D, Haehner-Daniels B (2000) In vivo effects of interleukin-10 on human cytochrome P450 activity. Clin Pharmacol Ther 67:32–43.  https://doi.org/10.1067/mcp.2000.103860 PubMedCrossRefGoogle Scholar
  57. Gu X, Ke S, Liu D et al (2006) Role of NF-kappaB in regulation of PXR-mediated gene expression: a mechanism for the suppression of cytochrome P-450 3A4 by proinflammatory agents. J Biol Chem 281:17882–17889.  https://doi.org/10.1074/jbc.M601302200 PubMedCrossRefGoogle Scholar
  58. Gurwith M, Lock M, Taylor EM et al (2013) Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: a randomised, double-blind, placebo-controlled, phase 1 study. Lancet Infect Dis 13:238–250.  https://doi.org/10.1016/S1473-3099(12)70345-6 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gustafson H, Holt-Casper D, Grainger D, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510.  https://doi.org/10.1016/j.nantod.2015.06.006 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M (2006) Zonal gene expression in murine liver: lessons from tumors. Hepatology 43:407–414.  https://doi.org/10.1002/hep.21082 PubMedCrossRefGoogle Scholar
  61. Hanigan MH, dela Cruz BL, Thompson DM, Farmer KC, Medina PJ (2008) Use of prescription and non-prescription medications and supplements by cancer patients during chemotherapy; questionnaire validation. J Oncol Pharm Pract 14:123–130.  https://doi.org/10.1177/1078155208090624 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hanley MJ, Cancalon P, Widmer WW, Greenblatt DJ (2011) The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol 7:267–286.  https://doi.org/10.1517/17425255.2011.553189 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hardonk M, Dijkhuis F, Hulstaert C, Koudstaal J (1992) Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation. J Leukoc Biol 52:296–302PubMedGoogle Scholar
  64. Hosseinpour F, Moore R, Negishi M, Sueyoshi T (2006) Serine 202 regulates the nuclear translocation of constitutive active/androstane receptor. Mol Pharmacol 69:1095–1102.  https://doi.org/10.1124/mol.105.019505 PubMedCrossRefGoogle Scholar
  65. Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P (2009) Bile acids as regulatory molecules. J Lipid Res 50:1509–1520.  https://doi.org/10.1194/jlr.R900007-JLR200 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Iizuka N, Oka M, Hamamoto Y et al (2004) Altered levels of cytochrome P450 genes in hepatitis B or C virus-infected liver identified by oligonucleotide microarray. Cancer Genom Proteom 1:53–58Google Scholar
  67. Iizumi T, Sato S, Iiyama T et al (1991) Recombinant human interleukin-1 beta analogue as a regulator of hematopoiesis in patients receiving chemotherapy for urogenital cancers. Cancer 68:1520–1523.  https://doi.org/10.1002/1097-0142(19911001)68:7<1520::Aid-Cncr2820680710>3.0.Co;2-2 CrossRefGoogle Scholar
  68. Jaeckel E, Cornberg M, Wedemeyer H et al (2001) Treatment of acute hepatitis C with interferon alfa-2b. N Engl J Med 345:1452–1457.  https://doi.org/10.1056/NEJMoa011232 PubMedCrossRefGoogle Scholar
  69. Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154:103–116PubMedCrossRefGoogle Scholar
  70. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S (2009) Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett 583:759–766.  https://doi.org/10.1016/j.febslet.2009.01.034 PubMedCrossRefGoogle Scholar
  71. Jonsson-Schmunk K, Wonganan P, Choi JH, Callahan SM, Croyle MA (2016) Integrin receptors play a key role in the regulation of hepatic CYP3A. Drug Metab Dispos 44:758–770.  https://doi.org/10.1124/dmd.115.068874 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jover R, Bort R, Gómez-Lechón MJ, Castell JV (2002) Down-regulation of human CYP3A4 by the inflammatory signal interleukin-6: molecular mechanism and transcription factors involved. FASEB J 16:1799–1801.  https://doi.org/10.1096/fj.02-0195fje PubMedGoogle Scholar
  73. Jover R, Moya M, Gómez-Lechón MJ (2009) Transcriptional regulation of cytochrome p450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha. Curr Drug Metab 10:508–519.  https://doi.org/10.2174/138920009788898000 PubMedCrossRefGoogle Scholar
  74. Kapur BM, Lala PK, Shaw JL (2014) Pharmacogenetics of chronic pain management. Clin Biochem 47:1169–1187.  https://doi.org/10.1016/j.clinbiochem.2014.05.065 PubMedCrossRefGoogle Scholar
  75. Kato R, Nakamura Y, Chiesara E (1963) Enhanced phenobarbital induction of liver microsomal drug-metabolizing enzymes in mice infected with murine hepatitus virus. Biochem Pharmacol 12:365–370PubMedCrossRefGoogle Scholar
  76. Khan HA, Abdelhalim MAK, Alhomida AS, Al-Ayed MS (2013) Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney. BioMed Res Int 2013:590730.  https://doi.org/10.1155/2013/590730 PubMedPubMedCentralGoogle Scholar
  77. Kinloch RD, Lee CM, van Rooijen N, Morgan ET (2011) Selective role for tumor necrosis factor-α, but not interleukin-1 or Kupffer cells, in down-regulation of CYP3A11 and CYP3A25 in livers of mice infected with a noninvasive intestinal pathogen. Biochem Pharmacol 82:312–321.  https://doi.org/10.1016/j.bcp.2011.04.016 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kitada M, Kamataki T, Itahashi K, Rikihisa T, Kanakubo Y (1987) P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, is the 16 alpha-hydroxylase of dehydroepiandrosterone 3-sulfate. J Biol Chem 262:13534–13537PubMedGoogle Scholar
  79. Klein K, Thomas M, Winter S, Nussler AK, Niemi M, Schwab M, Zanger UM (2012) PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther 91:1044–1052.  https://doi.org/10.1038/clpt.2011.336 PubMedCrossRefGoogle Scholar
  80. Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75:376–386PubMedCrossRefGoogle Scholar
  81. Kobayashi K, Sueyoshi T, Inoue K, Moore R, Negishi M (2003) Cytoplasmic accumulation of the nuclear receptor CAR by a tetratricopeptide repeat protein in HepG2 cells. Mol Pharmacol 64:1069–1075.  https://doi.org/10.1124/mol.64.5.1069 PubMedCrossRefGoogle Scholar
  82. Komori M, Nishio K, Fujitani T et al (1989) Isolation of a new human fetal liver cytochrome P450 cDNA clone: evidence for expression of a limited number of forms of cytochrome P450 in human fetal livers. Arch Biochem Biophys 272:219–225PubMedCrossRefGoogle Scholar
  83. Krenkel O, Tacke F (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17:306–321.  https://doi.org/10.1038/nri.2017.11 PubMedCrossRefGoogle Scholar
  84. Kulthong K, Maniratanachote R, Kobayashi Y, Fukami T, Yokoi T (2012) Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica 42:854–862.  https://doi.org/10.3109/00498254.2012.670312 PubMedCrossRefGoogle Scholar
  85. Kutscher S, Bauer T, Dembek C, Sprinzl M, Protzer U (2012) Design of therapeutic vaccines: hepatitis B as an example. Microb Biotechnol 5:270–282.  https://doi.org/10.1111/j.1751-7915.2011.00303.x PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lamb JG, Hathaway LB, Munger MA, Raucy JL, Franklin MR (2010) Nanosilver particle effects on drug metabolism in vitro. Drug Metab Dispos 38:2246–2251.  https://doi.org/10.1124/dmd.110.035238 PubMedCrossRefGoogle Scholar
  87. Lambs DC, Waterman MR (2013) Unusual properties of the cytochrome P450 superfamily. Philos Trans R Soc Lond B Biol Sci 368:20120434.  https://doi.org/10.1098/rstb.2012.0434 CrossRefGoogle Scholar
  88. Lee C-M, Pohl J, Morgan ET (2009) Dual mechanisms of CYP3A protein regulation by proinflammatory cytokine stimulation in primary hepatocyte cultures. Drug Metab Dispos 37:865–872.  https://doi.org/10.1124/dmd.108.026187 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Leeson GA, Biedenbach SA, Chan KY, Gibson JP, Wright GJ (1976) Decrease in the activity of the drug-metabolizing enzymes of rat liver following the administration of tilorone hydrochloride. Drug Metab Dispos 4:232–238PubMedGoogle Scholar
  90. Lewis BP, Burge CB, Bartel DP (2004) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20.  https://doi.org/10.1016/j.cell.2004.12.035 CrossRefGoogle Scholar
  91. Li T, Chiang JY (2006) Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab Dispos 34:756–764.  https://doi.org/10.1124/dmd.105.007575 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Li T, Jahan A, Chiang JY (2006) Bile acids and cytokines inhibit the human cholesterol 7 alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells. Hepatology 43:1202–1210.  https://doi.org/10.1002/hep.21183 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lin R-Y, Dayananda K, Chen T-C, Chen C-Y, Liu G-C, Lin K-L, Wang Y-M (2012) Targeted RGD nanoparticles for highly sensitive in vivo integrin receptor imaging. Contrast Media Mol Imaging 7:7–18.  https://doi.org/10.1002/cmmi.457 PubMedCrossRefGoogle Scholar
  94. Loeppen S, Koehle C, Buchmann A, Schwarz M (2005) A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis 26:239–248.  https://doi.org/10.1093/carcin/bgh298 PubMedCrossRefGoogle Scholar
  95. Lou X, Toresson G, Benod C, Suh JH, Philips KJ, Webb P, Gustafsson JA (2014) Structure of the retinoid X receptor α-liver X receptor β (RXRα-LXRβ) heterodimer on DNA. Nat Struct Mol Biol 21:277–281.  https://doi.org/10.1038/nsmb.2778 PubMedCrossRefGoogle Scholar
  96. Lu AY, Coon MJ (1968) Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 243:1331–1332PubMedGoogle Scholar
  97. Luo Y, Yang J, Yan Y et al (2015) RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale 7:14538–14546.  https://doi.org/10.1039/c5nr04003e PubMedCrossRefGoogle Scholar
  98. Mangelsdorf DJ, Borgmeyer U, Heyman RA et al (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6:329–344PubMedCrossRefGoogle Scholar
  99. Martin P, Giardiello M, McDonald TO, Smith D, Siccardi M, Rannard SP, Owen A (2015) Augmented inhibition of CYP3A4 in human primary hepatocytes by ritonavir solid drug nanoparticles. Mol Pharm 12:3556–3568.  https://doi.org/10.1021/acs.molpharmaceut.5b00204 PubMedCrossRefGoogle Scholar
  100. Martínez-Jiménez CP, Gómez-Lechón MJ, Castell JV, Jover R (2005) Transcriptional regulation of the human hepatic CYP3A4: identification of a new distal enhancer region responsive to CCAAT/enhancer-binding protein beta isoforms (liver activating protein and liver inhibitory protein). Mol Pharmacol 67:2088–2101.  https://doi.org/10.1124/mol.104.008169 PubMedCrossRefGoogle Scholar
  101. Martínez-Jiménez CP, Jover R, Donato MT, Castell JV, Gómez-Lechón MJ (2007) Transcriptional regulation and expression of CYP3A4 in hepatocytes. Curr Drug Metab 8:185–194.  https://doi.org/10.2174/138920007779815986 PubMedCrossRefGoogle Scholar
  102. Matsumura K, Saito T, Takahashi Y et al (2004) Identification of a novel polymorphic enhancer of the human CYP3A4 gene. Mol Pharmacol 65:326–334.  https://doi.org/10.1124/mol.65.2.326 PubMedCrossRefGoogle Scholar
  103. Meredith CG, Christian CD, Johnson RF, Troxell R, Davis GL, Schenker S (1985) Effects of influenza virus vaccine on hepatic drug metabolism. Clin Pharmacol Ther 37:396–401PubMedCrossRefGoogle Scholar
  104. Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 104:3947–3980.  https://doi.org/10.1021/cr020443g PubMedCrossRefGoogle Scholar
  105. Minamiyama Y, Takemura S, Imaoka S, Funae Y, Tanimoto Y, Inoue M (1997) Irreversible inhibition of cytochrome P450 by nitric oxide. J Pharmacol Exp Ther 283:1479–1485PubMedGoogle Scholar
  106. Moiemen NS, Shale E, Drysdale KJ, Smith G, Wilson YT, Papini R (2011) Acticoat dressings and major burns: systemic silver absorption. Burns 37:27–35.  https://doi.org/10.1016/j.burns.2010.09.006 PubMedCrossRefGoogle Scholar
  107. Molowa DT, Schuetz EG, Wrighton SA et al (1986) Complete cDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver. Proc Natl Acad Sci USA 83:5311–5315PubMedPubMedCentralCrossRefGoogle Scholar
  108. Morgan ET (2009) Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther 85:434–438.  https://doi.org/10.1038/clpt.2008.302 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Morgan ET, Goralski KB, Piquette-Miller M et al (2008) Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos 36:205–216.  https://doi.org/10.1124/dmd.107.018747 PubMedCrossRefGoogle Scholar
  110. Mukherjee P, Bhattacharya R, Wang P et al (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11:3530–3534.  https://doi.org/10.1158/1078-0432.CCR-04-2482 PubMedCrossRefGoogle Scholar
  111. Muntané-Relat J, Ourlin J, Domergue J, Maurel P (1995) Differential effects of cytokines on the inducible expression of CYP1A1, CYP1A2, and CYP3A4 in human hepatocytes in primary culture. Hepatology 22:1143–1153PubMedCrossRefGoogle Scholar
  112. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730.  https://doi.org/10.1021/ar800035u PubMedCrossRefGoogle Scholar
  113. Nascimento IP, Leite LCC (2012) Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 45:1102–1111.  https://doi.org/10.1590/S0100-879X2012007500142 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Naso M, Tomkowicz B, Perry WL, Strohl W (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs.  https://doi.org/10.1007/s40259-017-0234-5 (Epub ahead of print) PubMedPubMedCentralGoogle Scholar
  115. National Center for Health Statistics (2014) Health, United States, 2013: with special feature on prescription drugs. https://www.cdc.gov/nchs/data/hus/hus13.pdf Accessed 7 Aug 2017
  116. Nebert DW, Wikvall K, Miller WL (2013) Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 368:20120431.  https://doi.org/10.1098/rstb.2012.0431 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557.  https://doi.org/10.1038/nmat2442 PubMedCrossRefGoogle Scholar
  118. Nelson DR (2006) Cytochrome P450 nomenclature, 2004. Methods Mol Biol 320:1–10.  https://doi.org/10.1385/1-59259-998-2:1 PubMedGoogle Scholar
  119. Nyagode BA, Williams IR, Morgan ET (2015) Altered inflammatory responses to Citrobacter rodentium infection, but not bacterial lipopolysaccharide, in mice lacking the Cyp4a10 or Cyp4a14 genes. Inflammation 37:893–907.  https://doi.org/10.1007/s10753-013-9809-6 CrossRefGoogle Scholar
  120. Oesch-Bartlomowicz B, Oesch F (2003) Cytochrome-P450 phosphorylation as a functional switch. Arch Biochem Biophys 409:228–234.  https://doi.org/10.1016/S0003-9861(02)00558-1 PubMedCrossRefGoogle Scholar
  121. Ohtsuki S, Schaefer O, Kawakami H et al (2012) Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 40:83–92.  https://doi.org/10.1124/dmd.111.042259 PubMedCrossRefGoogle Scholar
  122. Omura T (2005) Heme-thiolate proteins. Biochem Biophys Res Commun 338:404–409.  https://doi.org/10.1016/j.bbrc.2005.08.267 PubMedCrossRefGoogle Scholar
  123. Omura T, Sato R (1962) A new cytochrome in liver microsomes. J Biol Chem 237:1375–1376PubMedGoogle Scholar
  124. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378PubMedGoogle Scholar
  125. Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (1966) Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase. Arch Biochem Biophys 117:660–672CrossRefGoogle Scholar
  126. Pabarcus MK, Hoe N, Sadeghi S, Patterson C, Wiertz E, Correia MA (2009) CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor receptor, AMFR) and CHIP E3 ligases. Arch Biochem Biophys 483:66–74.  https://doi.org/10.1016/j.abb.2008.12.001 PubMedCrossRefGoogle Scholar
  127. Pan YZ, Gao W, Yu AM (2009) MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 37:2112–2117.  https://doi.org/10.1124/dmd.109.027680 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Paolini M, Poul L, Berjaud C et al (2017) Nano-sized cytochrome P450 3A4 inhibitors to block hepatic metabolism of docetaxel. Int J Nanomed 12:5537–5556.  https://doi.org/10.2147/IJN.S141145 CrossRefGoogle Scholar
  129. Pascussi JM, Gerbal-Chaloin S, Drocourt L, Maurel P, Vilarem M (2003a) The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta 1619:243–253PubMedCrossRefGoogle Scholar
  130. Pascussi JM, Dvorák Z, Gerbal-Chaloin S, Assenat E, Maurel P, Vilarem MJ (2003b) Pathophysiological factors affecting CAR gene expression. Drug Metab Rev 35:255–268.  https://doi.org/10.1081/DMR-120026394 PubMedCrossRefGoogle Scholar
  131. Pascussi JM, Drocourt L, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ (2012) Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur J Biochem 268:6346–6358CrossRefGoogle Scholar
  132. Patnaik A, Haluska P, Tolcher AW et al (2016) A first-in-human phase I study of the oral p38 MAPK inhibitor, ralimetinib (LY2228820 dimesylate), in patients with advanced cancer. Clin Cancer Res 22:1095–1102.  https://doi.org/10.1158/1078-0432.CCR-15-1718 PubMedCrossRefGoogle Scholar
  133. Perlmann T, Rangarajan PN, Umesono K, Evans RM (1993) Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev 7:1411–1422PubMedCrossRefGoogle Scholar
  134. Poulost TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700CrossRefGoogle Scholar
  135. Prandota J (2005) Important role of proinflammatory cytokines/other endogenous substances in drug-induced hepatotoxicity: depression of drug metabolism during infections/inflammation states, and genetic polymorphisms of drug-metabolizing enzymes/cytokines may markedly contribute to this pathology. Am J Ther 12:254–261PubMedGoogle Scholar
  136. Rastinejad F, Perlmann T, Evans RM, Sigler PB (1995) Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375:203–211.  https://doi.org/10.1038/375203a0 PubMedCrossRefGoogle Scholar
  137. Renton KW (1981) Depression of hepatic cytochrome P-450-dependent mixed function oxidases during infection with encephalomyocarditis virus. Biochem Pharmacol 30:2333–2336.  https://doi.org/10.1016/0006-2952(81)90107-6 PubMedCrossRefGoogle Scholar
  138. Renton KW, Mannering GJ (1976) Depression of hepatic cytochrome P-450-dependent monooxygenase systems with administration interferon inducing agents. Biochem Biophys Res Commun 73:343–438PubMedCrossRefGoogle Scholar
  139. Rider P, Carmi Y, Cohen I (2016) Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int J Cell Biol 2016:9259646.  https://doi.org/10.1155/2016/9259646 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Rodríguez-Antona C, Bort R, Jover R, Tindberg N, Ingelman-Sundberg M, Gómez-Lechón MJ, Castell JV (2003) Transcriptional regulation of human CYP3A4 basal expression by CCAAT enhancer-binding protein alpha and hepatocyte nuclear factor-3 gamma. Mol Pharmacol 63:1180–1189PubMedCrossRefGoogle Scholar
  141. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876.  https://doi.org/10.1093/jac/dkn034 PubMedCrossRefGoogle Scholar
  142. Rosenberg SA, Yang JC, Topalian SL et al (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271:907–913PubMedCrossRefGoogle Scholar
  143. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10.  https://doi.org/10.1186/1743-8977-4-10 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Samaras SC, Dietz N (1953) Physiopathology of detoxification of pentobarbital sodium. Fed Am Soc Exp Biol 12:122–125Google Scholar
  145. Sanches F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24:2060–2071.  https://doi.org/10.1016/j.conbuildmat.2010.03.014 CrossRefGoogle Scholar
  146. Santantonio T, Fasano M, Sinisi E et al (2005) Efficacy of a 24-week course of PEG-interferon alpha-2b monotherapy in patients with acute hepatitis C after failure of spontaneous clearance. J Hepatol 42:329–333.  https://doi.org/10.1016/j.jhep.2004.11.021 PubMedCrossRefGoogle Scholar
  147. Satalkar P, Elger BS, Shaw DM (2016) Defining nano, nanotechnology and nanomedicine: why should it matter? Sci Eng Ethics 22:1255–1276.  https://doi.org/10.1007/s11948-015-9705-6 PubMedCrossRefGoogle Scholar
  148. Schreiber S, Rignall B, Braeuning A et al (2011) Phenotype of single hepatocytes expressing an activated version of β-catenin in liver of transgenic mice. J Mol Histol 42:393–400.  https://doi.org/10.1007/s10735-011-9342-6 PubMedCrossRefGoogle Scholar
  149. Schröder A, Wollnik J, Wrzodek C et al (2011) Inferring statin-induced gene regulatory relationships in primary human hepatocytes. Bioinformatics 27:2473–2477.  https://doi.org/10.1093/bioinformatics/btr416 PubMedCrossRefGoogle Scholar
  150. Schuetz JD, Molowa DT, Guzelian PS (1989) Characterization of a cDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver. Arch Biochem Biophys 274:355–365PubMedCrossRefGoogle Scholar
  151. Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M (2006) Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43:817–825.  https://doi.org/10.1002/hep.21131 PubMedCrossRefGoogle Scholar
  152. Sevior D, Pelkonen P, Ahokas J (2012) Hepatocytes: the powerhouse of biotransformation. Int J Biochem Cell Biol 44:257–261.  https://doi.org/10.1016/j.biocel.2011.11.011 PubMedCrossRefGoogle Scholar
  153. Sevrioukova IF, Poulos TL (2013) Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Trans 42:3116–3126.  https://doi.org/10.1039/c2dt31833d PubMedCrossRefGoogle Scholar
  154. Shimada T, Yamazaki H, Mimura M, Wakamiya N, Ueng YF, Guengerich FP, Inui Y (1996) Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 24:515–522PubMedGoogle Scholar
  155. Singh G, Renton KW (1981) Interferon-mediated depression of cytochrome P-450-dependent drug biotransformation. Mol Pharm 20:681–684Google Scholar
  156. Slaviero KA, Clarke SJ, Rivory LP (2003) Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol 4:224–232PubMedCrossRefGoogle Scholar
  157. Squires EJ, Sueyoshi T, Negishi M (2004) Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J Biol Chem 279:49307–49314.  https://doi.org/10.1074/jbc.M407281200 PubMedCrossRefGoogle Scholar
  158. Staudinger JL, Lichti K (2008) Cell signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol Pharmacol 5:17–34.  https://doi.org/10.1021/mp700098c CrossRefGoogle Scholar
  159. Sultana J, Cultroneo P, Trifirò G (2013) Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother 4::S73–S77.  https://doi.org/10.4103/0976-500X.120957 CrossRefGoogle Scholar
  160. Sunman J, Hawke R, LeCluyse E, Kashuba A (2004) Kupffer cell-mediated IL-2 suppression of CYP3A activity in human hepatocytes. Drug Metab Dispos 32:359–363PubMedCrossRefGoogle Scholar
  161. Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283:9674–9680.  https://doi.org/10.1074/jbc.M709382200 PubMedCrossRefGoogle Scholar
  162. Takehiro U, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccines (Basel) 2:624–641.  https://doi.org/10.3390/vaccines2030624 CrossRefGoogle Scholar
  163. Tameris MD, Hatherill M, Landry BS et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381:1021–1028.  https://doi.org/10.1016/S0140-6736(13)60177-4 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tan M, Ye Z, Jeong E-K, Wu X, Parker DL, Lu Z-R (2013) Synthesis and evaluation of nanoglobular macrocyclic Mn(II) chelate conjugates as non-gadolinium(III) MRI contrast agents. Bioconjug Chem 22:931–937.  https://doi.org/10.1021/bc100573t CrossRefGoogle Scholar
  165. Taneja G, Chu C, Moorthy B, Ghose R (2016) C-Jun-N-terminal kinase (JNK): novel regulator of PXR-mediated CYP3A4 induction. FASEB J 30(Supplement):713–716Google Scholar
  166. Tegude H, Schnabel A, Zanger U, Klein K, Eichelbaum M, Burk O (2007) Molecular mechanism of basal CYP3A4 regulation by hepatocyte nuclear factor 4alpha: evidence for direct regulation in the intestine. Drug Metab Dispos 35:946–954.  https://doi.org/10.1124/dmd.106.013565 PubMedCrossRefGoogle Scholar
  167. Thomas M, Burk O, Klumpp B et al (2013) Direct transcriptional regulation of human hepatic cytochrome P450 3A4 (CYP3A4) by peroxisome proliferator-activated receptor alpha (PPARα). Mol Pharmacol 83:709–718.  https://doi.org/10.1124/mol.112.082503 PubMedCrossRefGoogle Scholar
  168. Thomas M, Bayha C, Vetter S, Hofmann U, Schwarz M, Zanger U, Braeuning A (2015) Activating and inhibitory functions of WNT/β-catenin in the induction of cytochromes P450 by nuclear receptors in HepaRG cells. Mol Pharmacol 87:1013–1020.  https://doi.org/10.1124/mol.114.097402 PubMedCrossRefGoogle Scholar
  169. Tirona RG, Lee W, Leake BF et al (2003) The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med 9:220–224.  https://doi.org/10.1038/nm815 PubMedCrossRefGoogle Scholar
  170. Tsoi KM, MacParland SA, Ma XZ et al (2016) Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 15:1212–1221.  https://doi.org/10.1038/nmat4718 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Urquhart BL, Tirona RG, Kim RB (2007) Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 47:566–578.  https://doi.org/10.1177/0091270007299930 PubMedCrossRefGoogle Scholar
  172. Vaas S, Kreft L, Schwarz M, Braeuning A (2014) Cooperation of structurally different aryl hydrocarbon receptor agonists and β-catenin in the regulation of CYP1A expression. Toxicology 5:31–41.  https://doi.org/10.1016/j.tox.2014.08.010 CrossRefGoogle Scholar
  173. van Leeuwen RW, Swart EL, Boven E, Boom FA, Schuitenmaker MG, Hugtenburg JG (2011) Potential drug interactions in cancer therapy: a prevalence study using an advanced screening method. Ann Oncol 22:2334–2341.  https://doi.org/10.1093/annonc/mdq761 PubMedCrossRefGoogle Scholar
  174. Venkatraman N, Silman D, Folegatti PM, Hill AVS (2017) Vaccines against Ebola virus. Vaccine.  https://doi.org/10.1016/j.vaccine.2017.07.054 (Epub ahead of print) Google Scholar
  175. Walsh CE, Liu JM, Anderson SM, Rossio JL, Nienhuis AW, Young NS (1992) A trial of recombinant human interleukin-1 in patients with severe refractory aplastic anaemia. Br J Haematol 80:106–110PubMedCrossRefGoogle Scholar
  176. Wan YJ, An D, Cai Y, Repa JJ, Hung-Po C, Flores M, Sucov HM (2000) Hepatocyte-specific mutation establishes retinoid X receptor α as a heterodimeric integrator of multiple physiological processes in the liver. Mol Cell Biol 20:4436–4444PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wang X, Medzihradszky KF, Maltby D, Correia MA (2001) Phosphorylation of native and heme-modified CYP3A4 by protein kinase C: a mass spectrometric characterization of the phosphorylated peptides. Biochemistry 40:11318–11326.  https://doi.org/10.1021/bi010690z PubMedCrossRefGoogle Scholar
  178. Wang K, Chen S, Xie W, Wan YJ (2008) Retinoids induce cytochrome P450 3A4 through RXR/VDR-mediated pathway. Biochem Pharmacol 75:2204–2213.  https://doi.org/10.1016/j.bcp.2008.02.030 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Wang Y, Liao M, Hoe N, Acharya P, Deng C, Krutchinsky AN, Correia MA (2009) A role for protein phosphorylation in cytochrome P450 3A4 ubiquitin-dependent proteasomal degradation. J Biol Chem 284:5671–5684.  https://doi.org/10.1074/jbc.M806104200 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wang Y, Kim SM, Trnka MJ, Liu Y, Burlingame AL, Correia MA (2015) Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2–E3 ubiquitin ligase complexes. J Biol Chem 290:3308–3332.  https://doi.org/10.1074/jbc.M114.611525 PubMedCrossRefGoogle Scholar
  181. Wangcharoenrung L, Warisnoicharoen W (2011) Change in mRNA expression of human cytochrome p450 by gold nanoparticles. J Biol Science 11:173–180.  https://doi.org/10.3923/jbs.2011.173.180 CrossRefGoogle Scholar
  182. Warisnoicharoen W, Hongpiticharoen P, Lawanprasert S (2011) Alteration in enzymatic function of human cytochrome P450 by silver nanoparticles. Res J Environ Toxicol 5:58–64.  https://doi.org/10.3923/rjet.2011.58.64 CrossRefGoogle Scholar
  183. Wei Z, Jiang S, Zhang Y et al. (2014) The effect of microRNAs in the regulation of human CYP3A4: a systematic study using a mathematical model. Sci Rep 4:4283.  https://doi.org/10.1038/srep04283 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomed 9:4357–4373.  https://doi.org/10.2147/IJN.S46900 CrossRefGoogle Scholar
  185. Weißmüller S, Kronhart S, Kreuz D et al (2016) TGN1412 induces lymphopenia and human cytokine release in a humanized mouse model. PLoS One 11:e0149093.  https://doi.org/10.1371/journal.pone.0149093 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Westlind A, Malmebo S, Johansson I, Otter C, Andersson TB, Ingelman-Sundberg M, Oscarson M (2001) Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 281:134–155.  https://doi.org/10.1006/bbrc.2001.4505 CrossRefGoogle Scholar
  187. Wimmer P, Schreiner S (2015) Viral mimicry to usurp ubiquitin and SUMO host pathways. Viruses 7:4854–4872.  https://doi.org/10.3390/v7092849 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wonganan P, Zamboni WC, Strychor S, Dekker JD, Croyle MA (2009) Drug-virus interaction: effect of administration of recombinant adenoviruses on the pharmacokinetics of docetaxel in a rat model. Cancer Gene Ther 16:405–414.  https://doi.org/10.1038/cgt.2008.99 PubMedCrossRefGoogle Scholar
  189. Wonganan P, Jonsson-Schmunk K, Callahan S, Choi J, Croyle M (2014) Evaluation of the HC-04 cell line as an in vitro model for mechanistic assessment of changes in hepatic cytochrome P450 3A during adenovirus infection. Drug Metab Dispos 42:1191–1201.  https://doi.org/10.1124/dmd.113.056663 PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wrighton SA, Vandenbranden M (1989) Isolation and characterization of human fetal liver cytochrome P450HLp2: a third member of the P450III gene family. Arch Biochem Biophys 268:144–151PubMedCrossRefGoogle Scholar
  191. Wrighton SA, Ring BJ, Watkins PB, VandenBranden M (1989) Identification of a polymorphically expressed member of the human cytochrome P-450III family. Mol Pharmacol 36:97–105PubMedGoogle Scholar
  192. Wu S, Huang S, Ding J et al (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308.  https://doi.org/10.1038/onc.2010.34 PubMedCrossRefGoogle Scholar
  193. Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345.  https://doi.org/10.1038/nature03441 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Yan T, Lu L, Xie C et al (2015) Severely impaired and dysregulated cytochrome P450 expression and activities in hepatocellular carcinoma: implications for personalized treatment in patients. Mol Cancer Ther 14:2874–2886.  https://doi.org/10.1158/1535-7163.MCT-15-0274 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Yoshinari K, Kobayashi K, Moore R, Kawamoto T, Negishi M (2003) Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Lett 548:17–20.  https://doi.org/10.1016/S0014-5793(03)00720-8 PubMedCrossRefGoogle Scholar
  196. Zamule SM, Strom SC, Omiecinski CJ (2008) Preservation of hepatic phenotype in lentiviral-transduced primary human hepatocytes. Chem Bio Interact 173:179–186.  https://doi.org/10.1016/j.cbi.2008.03.015 CrossRefGoogle Scholar
  197. Zangar RC, Bollinger N, Verma S, Karin NJ, Lu Y (2008) The nuclear factor-kappa B pathway regulates cytochrome P450 3A4 protein stability. Mol Pharmacol 73:1652–1658.  https://doi.org/10.1124/mol.107.043976 PubMedCrossRefGoogle Scholar
  198. Zanger UM, Schwan M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141.  https://doi.org/10.1016/j.pharmthera.2012.12.007 PubMedCrossRefGoogle Scholar
  199. Zhang JG, Ho T, Callendrello AL et al (2014) Evaluation of calibration curve-based approaches to predict clinical inducers and noninducers of CYP3A4 with plated human hepatocytes. Drug Metab Dispos 42:1379–1391.  https://doi.org/10.1124/dmd.114.058602 PubMedCrossRefGoogle Scholar
  200. Zhaoa L, Setha A, Wibowoa N, Zhaoa C-X, Mitterb N, Yua C, Middelberga A (2014) Nanoparticle vaccines. Vaccine 32:327–337.  https://doi.org/10.1016/j.vaccine.2013.11.069 CrossRefGoogle Scholar
  201. Zhou C, Tabb MM, Nelson EL et al (2006) Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest 116:2280–2289.  https://doi.org/10.1172/JCI26283 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Zhu Y, Silvermna RB (2008) Revisiting heme mechanisms. A perspective on the mechanisms of nitric oxide synthase (NOS), heme oxygenase (HO), and cytochrome P450s (CYP450s). Biochemistry 47:2231–2243.  https://doi.org/10.1021/bi7023817 PubMedCrossRefGoogle Scholar
  203. Zhu S, Zhang J, Zhang L et al. (2017) Inhibition of Kupffer cell autophagy abrogates nanoparticle-induced liver injury. Adv Healthc Mater.  https://doi.org/10.1002/adhm.201601252 (Epub ahead of print) PubMedGoogle Scholar
  204. Zídek Z, Anzenbacher P, Kmoníčková E (2009) Current status and challenges of cytokine pharmacology. Br J Pharmacol 157:342–361.  https://doi.org/10.1111/j.1476-5381.2009.00206.x PubMedPubMedCentralCrossRefGoogle Scholar
  205. Zoulim F, Lebossé F, Levrero M (2016) Current treatments for chronic hepatitis B virus infections. Curr Opin Virol 18:109–116.  https://doi.org/10.1016/j.coviro.2016.06.004 PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2017

Authors and Affiliations

  1. 1.Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyThe University of Texas at AustinAustinUSA
  2. 2.Center for Infectious DiseaseThe University of Texas at AustinAustinUSA

Personalised recommendations