Advertisement

Journal of Pharmaceutical Investigation

, Volume 48, Issue 1, pp 3–17 | Cite as

Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents

  • Suk ho Hong
  • Yongdoo Choi
Review

Abstract

Photodynamic therapy (PDT) is an established method for the treatment of cancer which utilizes light, a photosensitizer (PS), and oxygen. Unfavourable characteristics of most PSs, such as low solubility and tumour specificity have led many researchers to adopt nanoscale drug delivery platforms for use in PDT. Mesoporous silica nanoparticles (MSNs) form a significant part of that effort, due to their ease and controllability of synthesis, ease of loading, availability of diverse surface functionalization, and biocompatibility. Therefore, in this review, we discuss the properties of MSNs as they pertain to their use in PDT and review the latest advances in the field, comparing the different approaches currently being used.

Keywords

Photodynamic therapy Mesoporous silica Drug delivery Nanocarrier Biocompatibility Theranostic platform Controlled release 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) (Grant Nos. NRF-2015M2A2A6A01044298 and 2014R1A2A1A11050923).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Asefa T, Tao Z (2012) Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol 25:2265–2284CrossRefGoogle Scholar
  2. Bechet D, Couleaud P, Frochot C, Viriot M-L, Guillemin F, Barberi-Heyob M (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 26:612–621CrossRefGoogle Scholar
  3. Beltrán-Osuna ÁA, Perilla JE (2016) Colloidal and spherical mesoporous silica particles: Synthesis and new technologies for delivery applications. J Sol-Gel Sci Technol 77:480–496CrossRefGoogle Scholar
  4. Bharti C, Nagaich U, Pal A, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5:124–133CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brevet D, Gary-Bobo M, Raehm L, Richeter S, Hocine O, Amro K, Loock B, Couleaud P, Frochot C, Morere A, Maillard P, Garcia M, Durand J-O (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun 0:1475–1477CrossRefGoogle Scholar
  6. Cauda V, Argyo C, Bein T (2010) Impact of different pegylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20:8693–8699CrossRefGoogle Scholar
  7. Chai S, Guo Y, Zhang Z, Chai Z, Ma Y, Qi L (2017) Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release. Nanotechnology 28:145101CrossRefPubMedPubMedCentralGoogle Scholar
  8. Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand JO (2010) Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2:1083–1095CrossRefPubMedPubMedCentralGoogle Scholar
  9. Croissant JG, Qi C, Maynadier M, Cattoën X, Wong Chi Man M, Raehm L, Mongin O, Blanchard-Desce M, Garcia M, Gary-Bobo M, Durand J-O (2016) Multifunctional gold-mesoporous silica nanocomposites for enhanced two-photon imaging and therapy of cancer cells. Front Mol Biosci 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387CrossRefGoogle Scholar
  11. Fan W, Shen B, Bu W, Chen F, He Q, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Ni D, Liu J, Shi J (2014) A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous mr/ucl imaging. Biomaterials 35:8992–9002CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fu C, Liu T, Li L, Liu H, Chen D, Tang F (2013) The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 34:2565–2575CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gary-Bobo M, Brevet D, Benkirane-Jessel N, Raehm L, Maillard P, Garcia M, Durand JO (2012a) Hyaluronic acid-functionalized mesoporous silica nanoparticles for efficient photodynamic therapy of cancer cells. Photodiagnosis Photodyn Ther 9:256–260CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, Charasson V, Loock B, Morere A, Maillard P, Garcia M, Durand JO (2012b) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and pdt. Int J Pharm 423:509–515CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gnanasammandhan MK, Idris NM, Bansal A, Huang K, Zhang Y (2016) Near-ir photoactivation using mesoporous silica-coated nayf4:Yb,er/tm upconversion nanoparticles. Nat Protoc 11:688–713CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guo R, Peng H, Tian Y, Shen S, Yang W (2016) Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small 12:4541–4552CrossRefPubMedPubMedCentralGoogle Scholar
  17. Han R, Yi H, Shi J, Liu Z, Wang H, Hou Y, Wang Y (2016) Ph-responsive drug release and nir-triggered singlet oxygen generation based on a multifunctional core-shell-shell structure. Phys Chem Chem Phys 18:25497–25503CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380CrossRefPubMedPubMedCentralGoogle Scholar
  19. He Q, Zhang Z, Gao F, Li Y, Shi J (2011) In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and pegylation. Small 7:271–280CrossRefGoogle Scholar
  20. Hong S, Kim H, Choi Y (2017a) Enhanced fluorescence imaging and photodynamic cancer therapy using hollow mesoporous nanocontainers. Chem Asian J 12:1700–1703CrossRefPubMedGoogle Scholar
  21. Hong S, Kim H, Choi Y (2017b) Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent. Nanotechnology 28:185102CrossRefPubMedGoogle Scholar
  22. Hou B, Yang W, Dong C, Zheng B, Zhang Y, Wu J, Wang H, Chang J (2017) Controlled co-release of doxorubicin and reactive oxygen species for synergistic therapy by nir remote-triggered nanoimpellers. Mater Sci Eng C Mater Biol Appl 74:94–102CrossRefPubMedGoogle Scholar
  23. Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448CrossRefPubMedGoogle Scholar
  24. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5:5390–5399CrossRefPubMedGoogle Scholar
  25. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18:1580–1585CrossRefGoogle Scholar
  26. Kamkaew A, Cheng L, Goel S, Valdovinos HF, Barnhart TE, Liu Z, Cai W (2016) Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl Mater Interfaces 8:26630–26637CrossRefPubMedPubMedCentralGoogle Scholar
  27. Konan YN, Gurny R, Allémann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66:89–106CrossRefGoogle Scholar
  28. Kwon S, Singh RK, Perez RA, Abou Neel EA, Kim H-W, Chrzanowski W (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:2041731413503357CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605CrossRefPubMedGoogle Scholar
  30. Li Y, Wen T, Zhao R, Liu X, Ji T, Wang H, Shi X, Shi J, Wei J, Zhao Y, Wu X, Nie G (2014) Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8:11529–11542CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li L, Liu T, Fu C, Tan L, Meng X, Liu H (2015) Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine 11:1915–1924CrossRefGoogle Scholar
  32. Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu J-N, Bu W-B, Shi J-L (2015) Silica coated upconversion nanoparticles: a versatile platform for the development of efficient theranostics. Acc Chem Res 48:1797–1805CrossRefGoogle Scholar
  34. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413CrossRefGoogle Scholar
  35. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042CrossRefPubMedPubMedCentralGoogle Scholar
  36. Luo D, Carter KA, Miranda D, Lovell JF (2017) Chemophototherapy: an emerging treatment option for solid tumors. Adv Sci 4:1600106CrossRefGoogle Scholar
  37. Lv R, Yang P, He F, Gai S, Yang G, Dai Y, Hou Z, Lin J (2015) An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with ph/temperature-responsive drug release. Biomaterials 63:115–127CrossRefGoogle Scholar
  38. Ma X, Qu Q, Zhao Y (2015) Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces 7:10671–10676CrossRefGoogle Scholar
  39. Meng H, Yang S, Li Z, Xia T, Chen J, Ji Z, Zhang H, Wang X, Lin S, Huang C, Zhou ZH, Zink JI, Nel AE (2011) Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small gtpase-dependent macropinocytosis mechanism. ACS Nano 5:4434–4447CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ormond A, Freeman H (2013) Dye sensitizers for photodynamic therapy. Materials 6:817CrossRefPubMedPubMedCentralGoogle Scholar
  41. Planas O, Bresoli-Obach R, Nos J, Gallavardin T, Ruiz-Gonzalez R, Agut M, Nonell S (2015) Synthesis, photophysical characterization, and photoinduced antibacterial activity of methylene blue-loaded amino- and mannose-targeted mesoporous silica nanoparticles. Molecules 20:6284–6298CrossRefPubMedPubMedCentralGoogle Scholar
  42. Postiglione I, Chiaviello A, Palumbo G (2011) Enhancing photodynamyc therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers 3:2597CrossRefPubMedPubMedCentralGoogle Scholar
  43. Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y (2009a) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5:2285–2290CrossRefPubMedPubMedCentralGoogle Scholar
  44. Qian J, Gharibi A, He S (2009b) Colloidal mesoporous silica nanoparticles with protoporphyrin ix encapsulated for photodynamic therapy. J Biomed Opt 14:014012CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rizzi M, Tonello S, Estevao BM, Gianotti E, Marchese L, Reno F (2017) Verteporfin based silica nanoparticle for in vitro selective inhibition of human highly invasive melanoma cell proliferation. J Photochem Photobiol B 167:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shi S, Chen F, Cai W (2013) Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine 8:2027–2039CrossRefPubMedPubMedCentralGoogle Scholar
  47. Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y (2017) Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 7:523–537CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46:792–801CrossRefPubMedPubMedCentralGoogle Scholar
  49. Teng IT, Chang YJ, Wang LS, Lu HY, Wu LC, Yang CM, Chiu CC, Yang CH, Hsu SL, Ho JA (2013) Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 34:7462–7470CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tong R, Lin H, Chen Y, An N, Wang G, Pan X, Qu F (2017) Near-infrared mediated chemo/photodynamic synergistic therapy with dox-ucnps@msio2/tio2-tc nanocomposite. Mater Sci Eng C Mater Biol Appl 78:998–1005CrossRefPubMedGoogle Scholar
  51. Trewyn BG, Nieweg JA, Zhao Y, Lin VSY (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J 137:23–29CrossRefGoogle Scholar
  52. Tu H-L, Lin Y-S, Lin H-Y, Hung Y, Lo L-W, Chen Y-F, Mou C-Y (2009) In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv Mater 21:172–177CrossRefGoogle Scholar
  53. Tu J, Wang T, Shi W, Wu G, Tian X, Wang Y, Ge D, Ren L (2012) Multifunctional znpc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape. Biomaterials 33:7903–7914CrossRefPubMedGoogle Scholar
  54. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of mcm-41: drug delivery system. Chem Mater 13:308–311CrossRefGoogle Scholar
  55. Veronese FM, Pasut G (2005) Pegylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vivero-Escoto JL, Elnagheeb M (2015) Mesoporous silica nanoparticles loaded with cisplatin and phthalocyanine for combination chemotherapy and photodynamic therapy in vitro. Nanomaterials 5:2302–2316CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VS (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6:1952–1967CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wang H, Han RL, Yang LM, Shi JH, Liu ZJ, Hu Y, Wang Y, Liu SJ, Gan Y (2016) Design and synthesis of core-shell-shell upconversion nanoparticles for nir-induced drug release, photodynamic therapy, and cell imaging. ACS Appl Mater Interfaces 8:4416–4423CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wang Y, Yang G, Wang Y, Zhao Y, Jiang H, Han Y, Yang P (2017) Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light. Nanoscale 9:4759–4769CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wen J, Yang K, Xu Y, Li H, Liu F, Sun S (2016) Construction of a triple-stimuli-responsive system based on cerium oxide coated mesoporous silica nanoparticles. Sci Rep 6:38931CrossRefPubMedPubMedCentralGoogle Scholar
  61. Xu J, Yang P, Sun M, Bi H, Liu B, Yang D, Gai S, He F, Lin J (2017) Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 11:4133–4144CrossRefPubMedGoogle Scholar
  62. Yang S, Li N, Liu Z, Sha W, Chen D, Xu Q, Lu J (2014a) Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale 6:14903–14910CrossRefPubMedGoogle Scholar
  63. Yang Y, Wang A, Jia Y, Brezesinski G, Dai L, Zhao J, Li J (2014b) Peptide p160-coated silica nanoparticles applied in photodynamic therapy. Chem Asian J 9:2126–2131CrossRefPubMedGoogle Scholar
  64. Yang Y, Yu M, Song H, Wang Y, Yu C (2015) Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy. Nanoscale 7:11894–11898CrossRefPubMedGoogle Scholar
  65. Yang H, Chen Y, Chen Z, Geng Y, Xie X, Shen X, Li T, Li S, Wu C, Liu Y (2017) Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by ph-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci 5:1001–1013CrossRefPubMedGoogle Scholar
  66. Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5:5717–5728CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhai W, He C, Wu L, Zhou Y, Chen H, Chang J, Zhang H (2012) Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells. J Biomed Mater Res B 100:1397–1403CrossRefGoogle Scholar
  68. Zhan J, Ma Z, Wang D, Li X, Li X, Le L, Kang A, Hu P, She L, Yang F (2017) Magnetic and ph dual-responsive mesoporous silica nanocomposites for effective and low-toxic photodynamic therapy. Int J Nanomedicine 12:2733–2748CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhang R, Wu C, Tong L, Tang B, Xu QH (2009) Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir 25:10153–10158CrossRefPubMedGoogle Scholar
  70. Zhang W, Shen J, Su H, Mu G, Sun JH, Tan CP, Liang XJ, Ji LN, Mao ZW (2016) Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Appl Mater Interfaces 8:13332–13340CrossRefGoogle Scholar
  71. Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VSY (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects. ACS Nano 5:1366–1375CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhao ZX, Huang YZ, Shi SG, Tang SH, Li DH, Chen XL (2014) Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy. Nanotechnology 25:285701CrossRefGoogle Scholar
  73. Zhu J, Wang H, Liao L, Zhao L, Zhou L, Yu M, Wang Y, Liu B, Yu C (2011) Small mesoporous silica nanoparticles as carriers for enhanced photodynamic therapy. Chem Asian J 6:2332–2338CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017
corrected publication October 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Authors and Affiliations

  1. 1.Biomarker BranchNational Cancer CenterGoyang-siRepublic of Korea

Personalised recommendations