MTZ worldwide

, Volume 79, Issue 9, pp 42–49 | Cite as

High thermal conductivity valve seat inserts and guides

  • Philippe Beaulieu
  • Sascha Orazem
  • Gunther Reissinger
  • David Woodward
Development Valve Gear

The thermal load of valves in combustion engines continues to increase. Most of the heat flowing from the valve into the cylinder head passes through valve seats and guides. New materials and product developments with high thermal conductivity show considerable potential for reducing the temperatures of valves. As a study by Federal-Mogul reveals, this can be used in many ways to lower component load, improve combustion and reduce emissions when designing viable future powertrains.

Reasons for Optimizing Thermal Conductivity

Due to turbocharging and downsizing, the specific engine outputs have continuously increased in recent years. In addition, stricter exhaust gas requirements and more realistic driving cycles result in higher exhaust gas temperatures, which affect the components in the exhaust gas stream. Valve Seat Inserts (VSIs) and Valve Guides (VGs) convey a large part of the valve’s heat load into the cylinder head and the cooling water. Cooled integrated exhaust manifolds...



The authors thank all HTC project participants in Coventry (UK), Waupun (USA), Burscheid (Germany), Barsinghausen (Germany) and Shanghai (China), especially Marcel Christoffel (engine tests and wear diagrams), Marco Hahn and Marc Amarotico (grinding and coating tests) as well as Antonius Wolking and team (valve FEM calculations).


  1. [1]
    Baek, H.-K.; Lee, S. W.; Han, D.; Kim, J.; Lee, J.; Aino, H.: Development of valvetrain system to improve knock characteristics for gasoline engine fuel economy. SAE International, 2014Google Scholar
  2. [2]
    Luven, C.; Puck, A.: Optimiertes Hohlventil zur verbesserten KÜhlung von Einlass- und Auslassventilen. VDI Wissensforum, 2012Google Scholar
  3. [3]
    Sentilkumar, R.; Sridharan, S.: Valve temperature control in multi-cylinder diesel engine. SAE International, 2001Google Scholar
  4. [4]
    N.N.: Werkstoff-Datenblatt CuZn37Mn3Al2PbSi. Online:, access: May 11, 2018
  5. [5]
    Aschaber, M.; Blaha, J.; Benediktov, A.; Haslinger, R.; Herbst, H.; Sauerwein, U.; Xin, J.: Development of Powertrain and Drive Line Components without Liquid Lubrication, Workpackage 7, Optimisation of Piston — Liner Oil Consumption & Oil free Cylinderhead. Final Report, July 2005Google Scholar
  6. [6]
    N.N.: Diehl 474 HT. Online:, access: April 27, 2018
  7. [7]
    N.N.: MS90. Online:, access: April 27, 2018
  8. [8]
    N.N.: PerforMet. Online:, access: April 27, 2018
  9. [9]
    Pitan, A.; Koch, H.: Modifikationen von Aluminiumlegierungen fÜr hohe thermische Beanspruchungen. In: Giesserei 99 (2012), pp. 38–43Google Scholar
  10. [10]
    Abdel-Fattah, Y.: The mechanics of valve cooling in internal-combustion engines. Dissertation, Bradford University, 2010Google Scholar
  11. [11]
    Ugartechea, C. V.; Furlana, K. P.; do Vale Pereiraa, R.; Trindadea, G.; Binderb, R.; Kleina, A. N.: Effect of microstructure on the thermal properties of sintered iron-copper composites. In: Materials Research 18 (2015), No. 6Google Scholar
  12. [12]
    Honeyman, R. N.; Pekarek, E. G.: Valve seat insert ring. US patent US2753858A, 1952Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Philippe Beaulieu
    • 1
  • Sascha Orazem
    • 2
  • Gunther Reissinger
    • 2
  • David Woodward
    • 1
  1. 1.Federal-Mogul PowertrainCoventryUnited Kingdom
  2. 2.Federal-Mogul PowertrainBurscheidGermany

Personalised recommendations