, Volume 6, Issue 5, pp 38–43 | Cite as

Hepatologie — Teil 5 : Ernährung und NAFLD

Welchen Einfluss haben Ernährung und Genussmittel auf die Fettleber?

  • Claus NiederauEmail author

Die Ernährung hat einen entscheidenden Einfluss auf die Entwicklung einer nicht alkoholischen Fettlebererkrankung. Während das Risiko durch hohe Gesamtkalorienzufuhr und erhöhten Kohlenhydratkonsum grundsätzlich steigt, ist die Gefahr durch andere Nahrungs- und Genussmittel aber nicht immer so eindeutig, wie oft vermutet.


  1. 1.
    Roeb E, Steffen HM, Bantel H, et al. S2k-Leitlinie. Nicht alkoholische Fettlebererkrankung. Z Gastroenterol. 2015; 53: 668–723.PubMedCrossRefGoogle Scholar
  2. 2.
    Oddy WH, Herbison CE, Jacoby P, et al. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am J Gastroenterol. 2013; 108: 778–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Chung M, Ma J, Patel K, et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:833–49.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chiu S, Sievenpiper JL, de Souza RJ, et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr. 2014;68:416–23.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jegatheesan P, De Bandt JP. Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients. 2017;9. pii: E230.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;65:1063–1075.CrossRefGoogle Scholar
  7. 7.
    Dehghan M, Mente A, Zhang X. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390:2050–2062.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Shi D, Chen J, Wang J, Yao J, Huang Y, Zhang G, Bao Z. Circadian clock genes in the metabolism of Non-alcoholic Fatty Liver Disease. Front Physiol. 2019;10:423PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kant AK, Graubard BI. Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010. Am J Clin Nutr. 2014;100:938–47.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hunsberger M, Mehlig K, Börnhorst C, et al. Dietary carbohydrate and nocturnal sleep duration in relation to children's BMI: Findings from the IDEFICS study in eight European countries. Nutrients. 2015;7:10223–36.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Crippa A, Discacciati A, Larsson SC, et al. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol. 2014;180:763–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhao Y, Wu K, Zheng J, et al. Association of coffee drinking with all-cause mortality: a systematic review and meta-analysis. Public Health Nutr. 2015;18:1282–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Simon TG, Trejo MEP, Zeb I, et al. Coffee consumption is not associated with prevalent subclinical cardiovascular disease (CVD) or the risk of CVD events, in nonalcoholic fatty liver disease: results from the multi-ethnic study of atherosclerosis. Metabolism. 2017;75:1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Godos J, Micek A, Marranzano M, et al. Coffee consumption and risk of biliary tract cancers and liver cancer: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients. 2017;9:9.CrossRefGoogle Scholar
  15. 15.
    Cardin R, Piciocchi M, Martines D, et al. Effects of coffee consumption in chronic hepatitis C: a randomized controlled trial. Dig Liver Dis. 2013;45:499–504.PubMedCrossRefGoogle Scholar
  16. 16.
    Hodge A, Lim S, Goh E, Wong O, et al. Coffee intake is associated with a lower liver stiffness in patients with non-alcoholic fatty liver disease, hepatitis c, and hepatitis B. Nutrients. 2017;9:1.CrossRefGoogle Scholar
  17. 17.
    Setiawan VW, Porcel J, Wei P, et al. Coffee drinking and alcoholic and nonalcoholic fatty liver diseases and viral hepatitis in the multiethnic cohort. Clin Gastroenterol Hepatol. 2017;15:1305–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Catalano D, Martines M, Marchesini G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844–50.CrossRefGoogle Scholar
  19. 19.
    Shokouh P, Jeppesen PB, Hermansen K, et al. A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients. 2017;10:10. pii: E1547CrossRefGoogle Scholar
  20. 20.
    Birerdinc A, Stepanova M, Pawloski L, et al. Caffeine is protective in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;35:76–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Freedman N, Park Y, Abnet C, et al. Association of coffee drinking with total and cause-specific mortality. Engl J Med. 2012;366:1891–904.CrossRefGoogle Scholar
  22. 22.
    Gutierrez-Grobe Y, Chavez-Tapia N, Sanchez-Valle V, et al. High coffee intake is associated with lower grade nonalcoholic fatty liver disease: the role of peripheral antioxidant activity. Ann Hepatol. 2012;11:350–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Molloy J, Calcagno C, Williams C, et al. Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology. 2012;55:429–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Anty R, Marjoux S, Iannelli A, et al. Regular coffee but not espresso drinking is protective against fibrosis in a cohort mainly composed of morbidly obese European women with NAFLD undergoing bariatric surgery. J Hepatol. 2012;57:1090–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Mitchell D, Knight C, Hockenberry J, et al. Beverage caffeine intakes in the U.S. Food Chem Toxicol. 2004;63:136–42.CrossRefGoogle Scholar
  26. 26.
    Bambha K, Wilson LA, Unalp A, et al. Coffee consumption in NAFLD patients with lower insulin resistance is associated with lower risk of severe fibrosis. Liver Int. 2014;34:1250–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Graeter T, Niedermayer PC, Mason RA, et al. EMIL-Study group. Coffee consumption and NAFLD: a community based study on 1223 subjects. BMC Res Notes. 2015 3;8:640.CrossRefGoogle Scholar
  28. 28.
    Zelber-Sagi S, Salomone F, Webb M, et al. Coffee consumption and nonalcoholic fatty liver onset: A prospective study in the general population. Transl. Res 2015;165:428–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Barros RK, Cotrim HP, Daltro C, et al. Nonalcoholic steatohepatitis in morbid obese patients: coffee consumption vs. disease severity. Ann Hepatol. 2016;15:350–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Wadhawan M, Anand AC. Coffee and Liver Disease. J Clin Exp Hepatol. 2016;6:40–6.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Heath RD, Brahmbhatt M, Tahan AC, et al. Coffee: The magical bean for liver diseases. World J Hepatol. 2017;9:689–696.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Veronese N, Notarnicola M, Cisternino AM, et al. Coffee intake and liver steatosis: A population study in a mediterranean area. Nutrients. 2018;10:1.CrossRefGoogle Scholar
  33. 33.
    Wijarnpreecha K, Thongprayoon C, Ungprasert P. Coffee consumption and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29: e8–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Shen H, Rodriguez AC, Shiani A, et al. Association between caffeine consumption and nonalcoholic fatty liver disease: a systemic review and meta-analysis. Therap Adv Gastroenterol. 2016;9:113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Marventano S, Salomone F, Godos J, et al. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: A systematic review and meta-analysis of observational studies. Clin Nutr. 2016;35:1269–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Saab S, Mallam D, Cox GA, et al. Impact of coffee on liver diseases: a systematic review. Liver Int. 2014;34:495–504.PubMedCrossRefGoogle Scholar
  37. 37.
    Kennedy OJ, Roderick P, Buchanan R, et al. Systematic review with meta-analysis: coffee consumption and the risk of cirrhosis. Aliment Pharmacol Ther. 2016;43:562–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Alferink LJM, Kiefte-de Jong JC, Murad DS. Potential mechanisms underlying the role of coffee in liver health. Semin Liver Dis. 2018;38:193–214.PubMedCrossRefGoogle Scholar
  39. 39.
    Salomone F, Li Volti G, Vitaglione P, et al. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease. Transl Res. 2014;163:593–602.PubMedCrossRefGoogle Scholar
  40. 40.
    Watanabe S, Takahashi T, Ogawa H, et al. Daily coffee intake inhibits pancreatic beta cell damage and nonalcoholic steatohepatitis in a mouse model of spontaneous metabolic syndrome, tsumura-suzuki obese diabetic mice. Metab Synd. Relat Disord. 2017;15:170–7.CrossRefGoogle Scholar
  41. 41.
    HVS KV, Patel DKS. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement Altern Med. 2016 5;16:274.Google Scholar
  42. 42.
    Zheng X, Dai W, Chen X, et al. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J Biomed Sci. 2015;22:105.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Moco S, Martin FP, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res. 2012;11:4781–90PubMedCrossRefGoogle Scholar
  44. 44.
    Vaughan MJ, Mitchell T, McSpadden, et al. What's inside that seed we brew? A new approach to mining the coffee microbiome. Appl Environ Microbiol. 2015;81:6518–27.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nishitsuji K, Watanabe S, Xiao J, et al Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep. 2018;8:16173.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhou L, Foster JA. Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat. 2015;11:715–23.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Tang J, Zheng JS, Fang L, et al. Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr. 2015;114:673–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang C, Qin YY, Wei X, et al. Tea consumption and risk of cardiovascular outcomes and total mortality: a systematic review and meta-analysis of prospective observational studies. Eur J Epidemiol. 2015;30:103–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Fon Sing M, Yang WS, Gao S, et al. Epidemiological studies of the association between tea drinking and primary liver cancer: a meta-analysis. Eur J Cancer Prev. 2011;20:157–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Mansour-Ghanaei F, Hadi A, Pourmasoumi M, et al. Green tea as a safe alternative approach for nonalcoholic fatty liver treatment: A systematic review and meta-analysis of clinical trials. Phytother Res. 2018;32:1876–84.PubMedCrossRefGoogle Scholar
  51. 51.
    Jin X, Zheng RH, Li YM. Green tea consumption and liver disease: a systematic review. Liver Int. 2008;28:990–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Hu J, Webster D, Cao J, et al. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Wijarnpreecha K, Thongprayoon C, Edmonds PJ, et al. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. QJM. 2016;109:461–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Lohner S, Toews I, Meerpohl JJ. Health outcomes of non-nutritive sweeteners: analysis of the research landscape. Nutr J. 2017;16:55.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chung M, Ma J, Patel K, et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:833–49.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chiu S, Sievenpiper JL, de Souza RJ, et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr. 2014;68:416–23.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Riveros MJ, Parada A, Pettinelli P. Fructose consumption and its health implications; fructose malabsorption and nonalcoholic fatty liver disease. Nutr Hosp. 2014;29:491–9.PubMedGoogle Scholar
  58. 58.
    Buitrago-Lopez A, Sanderson J, Johnson L, et al. Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ. 2011;343:d4488.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Kerimi A, Williamson G. The cardiovascular benefits of dark chocolate. Vascul Pharmacol. 2015;71:11–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Kwok CS, Boekholdt SM, Lentjes MA, et al. Habitual chocolate consumption and risk of cardiovascular disease among healthy men and women. Heart. 2015;101:1279–87.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Strat KM, Rowley TJ, Smithson AT, et al. Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J Nutr Biochem. 2016;35:1–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Davison K, Howe PR. Potential implications of dose and diet for the effects of cocoa flavanols on cardiometabolic function. J Agric Food Chem. 2015;63:9942–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Malhi H, Loomba R. Editorial: dark chocolate may improve NAFLD and metabolic syndrome by reducing oxidative stress. Aliment Pharmacol Ther. 2016;44:533–4.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sander R. Benefits of dark chocolate in treating metabolic syndrome. Nurs Older People. 2012;24:11.PubMedGoogle Scholar
  66. 66.
    Dos Santos PR, Ferrari GS, Ferrari CK. Diet, sleep and metabolic syndrome among a legal Amazon population, Brazil. Clin Nutr Res. 2015;4:41–5.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Loffredo L, Baratta F, Ludovica P, et al. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis. Nutr Metab Cardiovasc Dis. 2018;28:143–9.CrossRefGoogle Scholar
  68. 68.
    Noad RL, Rooney C, McCall D, et al. Beneficial effect of a polyphenol-rich diet on cardiovascular risk: a randomised control trial. Heart. 2016;102:1371–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Leyva-Soto A, Chavez-Santoscoy RA, Lara-Jacobo LR, et al. Daily consumption of chocolate rich in flavonoids decreases cellular genotoxicity and improves biochemical parameters of lipid and glucose metabolism. Molecules. 2018;23. pii: E2220.PubMedGoogle Scholar
  70. 70.
    Shah SR, Alweis R, Najim NI, et al. Use of dark chocolate for diabetic patients: a review of the literature and current evidence. J Community Hosp Intern Med Perspect. 2017;7:218–21.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Carrieri MP, Lions C, Sogni P, et al. Association between elevated coffee consumption and daily chocolate intake with normal liver enzymes in HIV-HCV infected individuals: results from the ANRS CO13 HEPAVIH cohort study. J Hepatol. 2014;60:46–53.PubMedCrossRefGoogle Scholar
  72. 72.
    Alkerwi A, Sauvageot N, Crichton GE, et al. Daily chocolate consumption is inversely associated with insulin resistance and liver enzymes in the Observation of Cardiovascular Risk Factors in Luxembourg study. Br J Nutr. 2016;115:1661–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Lee Y, Berryman CE, West SG, et al. Effects of dark chocolate and almonds on cardiovascular risk factors in overweight and obese individuals: a randomized controlled-feeding trial. J Am Heart Assoc. 2017;6 (12). pii:e005162.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Tokede OA, Gaziano JM, Djoussé L. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis. Eur J Clin Nutr. 2011;65:879–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Martin FP, Rezzi S, Peré-Trepat E, et al. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. J Proteome Res. 2009;8:5568–79.PubMedCrossRefGoogle Scholar
  76. 76.
    Petyaev IM, Bashmakov YK. Cocobiota: Implications for Human Health. J Nutr Meta. 2016;2016:7906927.Google Scholar
  77. 77.
    Lv J, Qi L, Yu C, Yang L, et al. China Kadoorie Biobank Collaborative Group. Consumption of spicy foods and total and cause specific mortality: population based cohort study. BMJ. 2015;351:h3942.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Yuan LJ, Qin Y, Wang L, et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin Nutr. 2016;35:388–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Sun F, Xiong S, Zhu Z. Dietary capsaicin protects cardiometabolic organs from dysfunction. Nutrients. 2016;8.Google Scholar
  80. 80.
    Chopan M, Littenberg B. The association of hot red chili pepper consumption and mortality: a large population-based cohort study. PLoS One. 2017;12:e0169876.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci. 2018;21:439–48.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Aune D, Keum N, Giovannucci E. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14:207.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chen GC, Zhang R, Martínez-González MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8:3893–905.PubMedCrossRefGoogle Scholar
  84. 84.
    Tuccinardi D, Farr OM, Upadhyay J, et al. Mechanisms Underlying the Cardiometabolic Protective Effect of Walnut Consumption in Obese Subjects: A Cross-Over, Randomized, Double-Blinded, Controlled Inpatient Physiology Study. Diabetes Obes Metab. 2019 May 14.Google Scholar
  85. 85.
    Kim Y, Keogh J, Clifton PM. Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses. Nutrients. 2018;10. pii: E1935.PubMedCrossRefGoogle Scholar
  86. 86.
    Eslami O, Shidfar F, Dehnad A. Inverse association of long-term nut consumption with weight gain and risk of overweight/obesity: a systematic review. Nutr Res. 2019 Apr 11;68:1–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang S, Fu J, Zhang Q, Liu L. Association between nut consumption and nonalcoholic fatty liver disease in adults. Liver Int. 2019. doi: Scholar
  88. 88.
    Dunn W, Sanyal AJ, Brunt EM, et al. Modest alcohol consumption is associated with decreased prevalence of steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). J Hepatol. 2012;57:384–91.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sookoian S, Castaño GO, Pirola CJ. Modest alcohol consumption decreases the risk of non-alcoholic fatty liver disease: a meta-analysis of 43 175 individuals. Gut. 2014;63:530–2.PubMedCrossRefGoogle Scholar
  90. 90.
    GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392:1015–35.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Hagström H. Alcohol Consumption in Concomitant Liver Disease: How Much is Too Much?. Curr Hepatol Rep. 2017;16:152–7.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ajmera VH, Terrault NA, Harrison SA. Is moderate alcohol use in nonalcoholic fatty liver disease good or bad? A critical review. Hepatology. 2017;65:2090–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Liu Y, Dai M, Bi Y, et al. Active smoking, passive smoking, and risk of nonalcoholic fatty liver disease (NAFLD): a population-based study in China. J Epidemiol. 2013;23:115–21.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hamabe A, Uto H, Imamura Y, et al. Impact of cigarette smoking on onset of nonalcoholic fatty liver disease over a 10-year period. J Gastroenterol. 2011;46:769–78.PubMedCrossRefGoogle Scholar
  95. 95.
    Rezayat AA, Moghadam DM, Nour GM, et al. Association between smoking and non-alcoholic fatty liver disease: A systematic review and meta-analysis. SAGE Open Med. 2018;6:2050312117745223.Google Scholar
  96. 96.
    Sinha-Hikim AP, Sinha-Hikim I, Friedman TC. Connection of nicotine to diet-induced obesity and non-alcoholic fatty liver disease: cellular and mechanistic insights. Front Endocrinol (Lausanne). 2017 Feb 10;8:23.CrossRefGoogle Scholar
  97. 97.
    Andreu V, Mas A, Bruguera M, et al. Ecstasy: a common cause of severe acute hepatotoxicity. J Hepatol. 1998;29:394–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Jones AL, Simpson KJ. Review article: mechanisms and management of hepatotoxicity in ecstasy (MDMA) and amphetamine intoxications. Aliment Pharmacol. 1999;13:129–33.CrossRefGoogle Scholar
  99. 99.
    Tarantino G, Citro V, Finelli C. Recreational drugs: a new health hazard for patients with concomitant chronic liver diseases. J Gastrointest Liver Dis. 2014;23:79–84.Google Scholar
  100. 100.
    Roy DN, Goswami R. Drugs of abuse and addiction: A slippery slope toward liver injury. Chem Biol Interact. 2016;255:92–105.PubMedCrossRefGoogle Scholar
  101. 101.
    Deveaux V, Cadoudal T, Ichigotani Y, et al. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One. 2009;4:e5844.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hézode C, Zafrani ES, Roudot-Horaval F, et al. Daily cannabis use: a novel risk factor of steatosis severity in patients with chronic hepatitis C. Gastroenterology. 2008;134:432–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Dibba P, Li A, Cholankeril G, et al. Mechanistic potential and therapeutic implications of cannabinoids in nonalcoholic fatty liver disease. Medicines (Basel). 2018a;5 (2). pii:E47.CrossRefGoogle Scholar
  104. 104.
    Dibba P, Li AA, Cholankeril G, et al. The role of cannabinoids in the setting of cirrhosis. Medicines (Basel). 2018b;5 (2). pii:E52CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Katholisches Klinikum Oberhausen St. Josef-Hospital, Klinik für Innere MedizinAkademisches Lehrkrankenhaus der Universität Duisburg-EssenOberhausenDeutschland

Personalised recommendations