Advertisement

gynäkologie + geburtshilfe

, Volume 24, Supplement 1, pp 28–35 | Cite as

Mikrobielle Endokrinologie

Hormon-Mikrobiota-Wechselwirkungen in der Menopause

  • Luise VerhasseltEmail author
Fortbildung
  • 50 Downloads

Die Mikrobiota des Menschen als ökologische Gemeinschaft von kommensalen, symbiotisch und pathogenen Mikroorgansimen kann die weiblichen Sexualhormone beeinflussen und vice versa. Dieses Zusammenspiel hat auch Auswirkungen auf die Menopause.

Literatur

  1. 1.
    Robinson CJ et al. From structure to function: the ecology of host-associated microbial communities. Microbiology and molecular biology reviews. MMBR 2010;74:453–76PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chien AL et al. Association of Systemic Antibiotic Treatment of Acne With Skin Microbiota Characteristics. JAMA Dermatol 2019;155(4):425–34PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lombardi P et al. Metabolism of androgens and estrogens by human fecal microorganisms. J Steroid Biochem 1978;9:795–801PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jarvenpaa P et al. In vitro metabolism of estrogens by isolated intestinal micro-organisms and by human faecal microflora. J Steroid Biochem 1980;13: 345–9PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Eriksson H. Steroids in germfree and conventional rats. Unconjugated metabolites of [4-14C]pregnenolone and [4-14C]corticosterone in faeces from female rats. Eur J Biochem 1970;16:261–7PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Adlercreutz H and Jarvenpaa P. Assay of estrogens in human feces. J Steroid Biochem 1982;17:639–45PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Flores R et al. Assessment of the human faecal microbiota: I. Measurement and reproducibility of selected enzymatic activities. Eur J Clin Invest 2012;42:848–54PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Martin F et al. Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem 1975;6:1339–46PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Shimizu K et al. Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim 1998;47:151–8PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Flores R et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 2012;10:253PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kornman KS and Loesche WJ. Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun 1982;35:256–63PubMedPubMedCentralGoogle Scholar
  12. 12.
    De Filippis F et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016;65:1812–21PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Klinger G et al. Influence of hormonal contraceptives on microbial flora of gingival sulcus. Contraception 1998;57:381–4PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Menon R et al. Diet complexity and estrogen receptor beta status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol 2013;79:5763–73PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Org E et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 2016;7:313–22PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yurkovetskiy L et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 2013;39:400–12PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Moreno-Indias I et al. Neonatal Androgen Exposure Causes Persistent Gut Microbiota Dysbiosis Related to Metabolic Disease in Adult Female Rats. Endocrinology 2016;157:4888–98PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Borgo F et al. Body Mass Index and Sex Affect Diverse Microbial Niches within the Gut. Front Microbiol 2018;9:213PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ding T and Schloss PD. Dynamics and associations of microbial community types across the human body. Nature 2014;509:357–60PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Dominianni C et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One 2015;10:e0124599PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207–14CrossRefGoogle Scholar
  22. 22.
    Kovacs A et al. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol 2011;61:423–8PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lay C et al. Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 2005;71:4153–5PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zhou Z et al. Progesterone decreases gut permeability through upregulating occludin expression in primary human gut tissues and Caco-2 cells. Scientific Reports 2019;9:8367PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Nuriel-Ohayon M et al. Progesterone Increases Bifidobacterium Relative Abundance during Late Pregnancy. Cell Reports 2019;27:730–6.e733.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bergmann KR et al. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 2013;182: 1595–606PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sovijit WN et al. Ovarian progesterone suppresses depression and anxiety-like behaviors by increasing the Lactobacillus population of gut microbiota in ovariectomized mice. Neurosci Res 2019 Apr 22. pii: S0168-0102(19)30142-7Google Scholar
  28. 28.
    Ruiz L et al. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol 2017;8:2345PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    de Vos P et al. Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Front Immunol 2017;8:1000PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Santos-Marcos JA et al. Influence of gender and menopausal status on gut microbiota. Maturitas 2018;116:43–53PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kasai C et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology 2015;15:100PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Koliada A et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology 2017;17:120PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Blachier F et al. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 2007;33:547–62PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bolognini D et al. The Pharmacology and Function of Receptors for Short-Chain Fatty Acids. Mol Pharmacol 2016;89:388–98PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Morrison DJ and Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016;7:189–200PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gao Z et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009;58:1509–17PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gibson P and Rosella O. Interleukin 8 secretion by colonic crypt cells in vitro: response to injury suppressed by butyrate and enhanced in inflammatory bowel disease. Gut 1995;37:536–43PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sampson TR et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016;167:1469–80.e1412.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fettweis JM et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 2014;160(Pt 10):2272–82PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Juge R et al. Shift in skin microbiota of Western European women across aging. J Appl Microbiol 2018;125:907–16PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Shibagaki N et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Scientific Reports 2017;7:10567PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zouboulis CC and Boschnakow A. Chronological ageing and photoageing of the human sebaceous gland. Clin Exp Dermatol 2001;26:600–7PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bouslimani A et al. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A 2005;112:E2120–9CrossRefGoogle Scholar
  44. 44.
    Gliniewicz K et al. Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women. Front Microbiol 2019;10:193PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Antonio MA et al. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis 1999;180:1950–6PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mirmonsef P et al. Exploratory comparison of vaginal glycogen and Lactobacillus levels in premenopausal and postmenopausal women. Menopause (New York, NY) 2015;22:702–9CrossRefGoogle Scholar
  47. 47.
    Murphy K et al. Impact of reproductive aging on the vaginal microbiome and soluble immune mediators in women living with and at-risk for HIV infection. PLoS One 2019;14:e0216049PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hillier SL and Lau RJ. Vaginal microflora in postmenopausal women who have not received estrogen replacement therapy. Clin Infect Dis 1997;25 Suppl 2:S123–6CrossRefGoogle Scholar
  49. 49.
    Brotman RM et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause (New York, NY) 2014;21:450–58CrossRefGoogle Scholar
  50. 50.
    Shen J et al. Effects of low dose estrogen therapy on the vaginal microbiomes of women with atrophic vaginitis. Scientific Reports 2016;6:24380PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cryan JF and O’Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 2011;23:187–92CrossRefGoogle Scholar
  52. 52.
    El Aidy S et al. Gut Microbiota: The Conductor in the Orchestra of Immune-Neuroendocrine Communication. Clin Ther 2015;37:954–67PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Frost G et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014;5:3611PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Braniste V et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014;6:263ra158PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    van de Wouw M et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. Journal Physiol 2018;596:4923–44CrossRefGoogle Scholar
  56. 56.
    Cryan JF and Dinan TG. More than a gut feeling: the microbiota regulates neurodevelopment and behavior. Neuropsychopharmacol 2015;40:241–2CrossRefGoogle Scholar
  57. 57.
    Bromet E et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC medicine 2011;9:90PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Georgakis MK et al. Association of Age at Menopause and Duration of Reproductive Period With Depression After Menopause: A Systematic Review and Meta-analysis. JAMA Psychiatry 2016;73:139–49PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Jiang H et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015;48:186–94PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Naseribafrouei A et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 2014;26,1155–62PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Pinto-Sanchez MI et al. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients with Irritable Bowel Syndrome. Gastroenterol 2017;153:448–59.e448CrossRefGoogle Scholar
  62. 62.
    Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404–11PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006. Natl Health Stat Report 2009;1–7Google Scholar
  64. 64.
    Henneman P et al. Prevalence and heritability of the metabolic syndrome and its individual components in a Dutch isolate: the Erasmus Rucphen Family study. J Med Genet 2008;45:572–7PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hwang LL et al. Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity (Silver Spring, Md) 2010;18:463–9CrossRefGoogle Scholar
  66. 66.
    Guarner-Lans V et al. Relation of aging and sex hormones to metabolic syndrome and cardiovascular disease. Exp Gerontol 2011;46:517–23PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    He C et al. High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice. Front Microbiol 2018;9:639PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Turnbaugh PJ et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027–31PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kaliannan K et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 2018;6:205PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Britton RA et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 2014;229:1822–30PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sjogren K et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res 2012;27:1357–67PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Atarashi K et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science (New York, NY) 2011;331:337–41CrossRefGoogle Scholar
  73. 73.
    Brotman RM et al. Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis. Sex Transm Dis 2010;86:297–302CrossRefGoogle Scholar
  74. 74.
    Hummelen R et al. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS One 2011;6:e26602PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Keane FE et al. A longitudinal study of the vaginal flora over a menstrual cycle. Int J STD AIDS 1997;8:489–94PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Chen KLA et al. Long-Term Administration of Conjugated Estrogen and Bazedoxifene Decreased Murine Fecal beta-Glucuronidase Activity Without Impacting Overall Microbiome Community. Scientific Reports 2018;8:8166PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Setchell KD and Clerici C. Equol: history, chemistry, and formation. The Journal of nutrition 2010;140:1355s–62sPubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Guadamuro L et al. Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones. BMC Microbiology 2017;17:93PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Raimondi S et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol 2009;81:943–50PubMedCrossRefGoogle Scholar
  80. 80.
    Vazquez L et al. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures. Front Microbiol 2017;8:1155PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Frankenfeld CL. Cardiometabolic risk and gut microbial phytoestrogen metabolite phenotypes. Mol Nutr Food Res 2017;61Google Scholar
  82. 82.
    Daily JW et al. Equol Decreases Hot Flashes in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Med Food 2019;22:127–39PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Caruso S et al. Vaginal health of postmenopausal women on nutraceutical containing equol. Menopause (New York, NY) 2018;25:430–35CrossRefGoogle Scholar
  84. 84.
    Lambert MNT et al. Combined Red Clover isoflavones and probiotics potently reduce menopausal vasomotor symptoms. PLoS One 2017;12:e0176590PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Szulinska M et al. Multispecies Probiotic Supplementation Favorably Affects Vascular Function and Reduces Arterial Stiffness in Obese Postmenopausal Women-A 12-Week Placebo-Controlled and Randomized Clinical Study. Nutrients 2018;10Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Medizinische MikrobiologieUniversitätsklinikum Essen (AöR), Robert Koch-HausEssenDeutschland

Personalised recommendations