Advertisement

Infection

pp 1–8 | Cite as

Management of early- and late-onset sepsis: results from a survey in 80 German NICUs

  • Jana E. Litz
  • Sybelle Goedicke-Fritz
  • Christoph Härtel
  • Michael Zemlin
  • Arne SimonEmail author
Original Paper
  • 119 Downloads

Abstract

Purpose

The management of early- (EOS) and late-onset sepsis (LOS) and neonatal intensive care units (NICUs) has not been extensively evaluated.

Methods

231 highly specialized level 1 and level 2 NICUs in Germany were asked to participate in an internet-based survey.

Results

The final analysis of anonymized datasets from 80 NICUs (response rate 34.6 %) compared university hospitals and regional neonatal referral centers. The survey describes potential areas of improvement concerning empirical treatment of infants with LOS with vancomycin and 3rd generation cephalosporins, minimal volume of blood sampling for aerobic culture, consideration of lumbar tap in any child with blood culture positive LOS and drug monitoring details for gentamicin and vancomycin.

Conclusion

In summary, this survey reveals a significant gap between recent national German guidelines and daily practices in German NICUs.

Keywords

Neonatal intensive care Very low birth weight Early-onset sepsis Late-onset sepsis Blood culture Lumbar tap Gentamicin Vancomycin Drug monitoring 

Notes

Acknowledgements

Our thanks go to all participating neonatologists and to the members of the KRINKO working group “Neonatal intensive care”: Dr. Jürgen Christoph, Prof. Dr. Christof Dame, Prof. Dr. Christine Geffers, Prof. Dr. Christian Gille, Prof. Dr. Irene Krämer, Dr. Matthias Marschal, Prof. Dr. Andreas Müller, and Prof. Dr. Mardjan Arvand and Vanda Marujo (Robert Koch Institute). We thankfully acknowledge the help of Gudrun Wagenpfeil concerning statistical analysis.

Funding

The German Society for Pediatric Infectious Diseases (DGPI) actively promoted the distribution of the survey (website and E-Mail invitation) and provided the technical prerequisites (Survey Monkey™).

Compliance with ethical standards

Conflict of interest

Arne Simon is the second chair of the German Commission for Hospital Hygiene and Infection Prevention (KRINKO) affiliated at the Robert Koch Institute, Berlin, and coordinates the KRINKO working group “Neonatal Intensive Care”. Michael Zemlin is the coordinator of the AWMF Recommendation “Neonatale Sepsis” (AWMF Registration Number 024/008) lead-managed by the German Society of Pediatric and Neonatal Intensive Care (GNPI). Christoph Haertel is a member of the KRINKO working group “Neonatal Intensive Care” and co-authored the AWMF Recommendation “Neonatale Sepsis” (AWMF Registration Number 024/008).

Supplementary material

15010_2018_1263_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 KB)

References

  1. 1.
    Troger B, Gopel W, Faust K, et al. Risk for late-onset blood-culture proven sepsis in very-low-birth weight infants born small for gestational age: a large multicenter study from the German Neonatal Network. Pediatr Infect Dis J. 2014;33:238–43.CrossRefGoogle Scholar
  2. 2.
    Stichtenoth G, Demmert M, Bohnhorst B, et al. Major contributors to hospital mortality in very-low-birth-weight infants: data of the birth year 2010 cohort of the German Neonatal Network. Klin Padiatr. 2012;224:276–81.CrossRefGoogle Scholar
  3. 3.
    Alshaikh B, Yusuf K, Sauve R. Neurodevelopmental outcomes of very low birth weight infants with neonatal sepsis: systematic review and meta-analysis. J Perinatol. 2013;33:558–64.CrossRefGoogle Scholar
  4. 4.
    Reichert F, Piening B, Geffers C, Gastmeier P, Buhrer C, Schwab F. Pathogen-specific clustering of nosocomial blood stream infections in very preterm infants. Pediatrics. 2016;137:e 20152860.CrossRefGoogle Scholar
  5. 5.
    Leistner R, Piening B, Gastmeier P, Geffers C, Schwab F. Nosocomial infections in very low birthweight infants in Germany: current data from the national surveillance system NEO-KISS. Klin Padiatr. 2013;225:75–80.CrossRefGoogle Scholar
  6. 6.
    Cantey JB, Ronchi A, Sanchez PJ. Spreading the benefits of infection prevention in the neonatal intensive care unit. JAMA Pediatr. 2015;169:1089–91.CrossRefGoogle Scholar
  7. 7.
    Kermorvant-Duchemin E, Laborie S, Rabilloud M, Lapillonne A, Claris O. Outcome and prognostic factors in neonates with septic shock. Pediatr Crit Care Med. 2008;9:186–91.CrossRefGoogle Scholar
  8. 8.
    Patel SJ, Green N, Clock SA, et al. Gram-Negative Bacilli in infants hospitalized in the neonatal intensive care unit. J Pediatric Infect Dis Soc. 2017;6:227–30.PubMedGoogle Scholar
  9. 9.
    Cantey JB. Optimizing the use of antibacterial agents in the neonatal period. Paediatr Drugs. 2016;18:109–22.CrossRefGoogle Scholar
  10. 10.
    Cantey JB, Milstone AM. Bloodstream infections: epidemiology and resistance. Clin Perinatol. 2015;42:1–16 (vii).CrossRefGoogle Scholar
  11. 11.
    Cantey JB, Patel SJ. Antimicrobial stewardship in the NICU. Infect Dis Clin North Am. 2014;28:247–61.CrossRefGoogle Scholar
  12. 12.
    Cantey JB, Wozniak PS, Pruszynski JE, Sanchez PJ. Reducing unnecessary antibiotic use in the neonatal intensive care unit (SCOUT): a prospective interrupted time-series study. Lancet Infect Dis. 2016;16:1178–84.CrossRefGoogle Scholar
  13. 13.
    Cantey JB, Wozniak PS, Sanchez PJ. Prospective surveillance of antibiotic use in the neonatal intensive care unit: results from the SCOUT study. Pediatr Infect Dis J. 2015;34:267–72.CrossRefGoogle Scholar
  14. 14.
    Lutsar I, Chazallon C, Carducci FI, et al. Current management of late onset neonatal bacterial sepsis in five European countries. Eur J Pediatr. 2014;173:997–1004.PubMedGoogle Scholar
  15. 15.
    Fernando AM, Heath PT, Menson EN. Antimicrobial policies in the neonatal units of the United Kingdom and Republic of Ireland. J Antimicrob Chemother. 2008;61:743–5.CrossRefGoogle Scholar
  16. 16.
    Liem TB, Krediet TG, Fleer A, Egberts TC, Rademaker CM. Variation in antibiotic use in neonatal intensive care units in the Netherlands. J Antimicrob Chemother. 2010;65:1270–5.CrossRefGoogle Scholar
  17. 17.
    Kadambari S, Heath PT, Sharland M, Lewis S, Nichols A, Turner MA. Variation in gentamicin and vancomycin dosage and monitoring in UK neonatal units. J Antimicrob Chemother. 2011;66:2647–50.CrossRefGoogle Scholar
  18. 18.
    Leroux S, Zhao W, Betremieux P, Pladys P, Saliba E, Jacqz-Aigrain E. Therapeutic guidelines for prescribing antibiotics in neonates should be evidence-based: a French national survey. Arch Dis Child. 2015;100:394–8.CrossRefGoogle Scholar
  19. 19.
    Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut B; Ergänzende E. zur “Prävention nosokomialer Infektionen bei neonatologischen Intensivpflegepatienten mit einem Geburtsgewicht unter 1.500 g” (2007). Epidemiol Bulletin des Robert Koch-Instituts, Berlin. 2012;(16. January 2012/Nr. 2):13–15.Google Scholar
  20. 20.
    Christoph J, Dame C, Eckmanns T, et al. Risikocharakterisierung intensivmedizinisch behandelter Früh- und Neugeborener und Daten zur Ist-Situation in deutschen neonatologischen Intensivpflegestationen 2013 - Fachliche Erläuterungen zu folgender Empfehlung: Praktische Umsetzung sowie krankenhaushygienische und infektionspräventive Konsequenzen des mikrobiellen Kolonisationsscreenings bei intensivmedizinisch behandelten Früh- und Neugeborenen Ergänzende Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut, Berlin zur Implementierung der Empfehlungen zur Prävention nosokomialer Infektionen bei neonatologischen Intensivpflegepatienten mit einem Geburtsgewicht unter 1.500 g aus dem Jahr 2007 und 2012 (Epidemiologisches Bulletin 42/2013). Epidemiol Bulletin des Robert Koch-Instituts, Berlin 2013;Supplement zu Ausgabe 42(21. Oktober 2013).Google Scholar
  21. 21.
    Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut B. Praktische Umsetzung sowie krankenhaushygienische und infektionspräventive Konsequenzen des mikrobiellen Kolonisationsscreenings bei intensivmedizinisch behandelten Früh- und Neugeborenen -Ergänzende Empfehlung der KRINKO beim Robert Koch-Institut, Berlin, zur Implementierung der Empfehlungen zur Prävention nosokomialer Infektionen bei neonatologischen Intensivpflegepatienten mit einem Geburtsgewicht unter 1.500 g aus dem Jahr 2007 und 2012. Epidemiol Bulletin des Robert Koch-Instituts, Berlin. 2013;Nr. 42(21. Oktober 2013):421–433.Google Scholar
  22. 22.
    Smith A, Saiman L, Zhou J, Della-Latta P, Jia H, Graham PL. Concordance of gastrointestinal tract colonization and subsequent bloodstream infections with Gram-negative Bacilli in very low birth weight infants in the neonatal intensive care unit. Pediatr Infect Dis J. 2010;29:831–5.CrossRefGoogle Scholar
  23. 23.
    Haertel C, Simon A, Geffers C, et al. Nosokomiale Infektionen bei Frühgeborenen—Umsetzung der KRINKO-Empfehlungen im Deutschen Frühgeborenennetzwerk. Monatsschr Kinderheilkd. 2013;161:27–33.CrossRefGoogle Scholar
  24. 24.
    Deutsche Gesellschaft für Neonatologie und Pädiatrische Intensivmedizin. Deutsche Gesellschaft für Pädiatrische Infektiologie, Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG), Arbeitsgemeinschaft der wissenschaftlichen Fachgesellschaften (AWMF). Bakterielle Infektionen bei Neugeborenen. AWMF Register No 024—008 2018; 30.04.2018.Google Scholar
  25. 25.
    Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut. Definition der Multiresistenz gegenüber Antibiotika bei gramnegativen Stäbchen im Hinblick auf Maßnahmen zur Vermeidung der Weiterverbreitung. Epidemiol Bull des Robert Koch-Instituts Berlin. 2011;12:337–9.Google Scholar
  26. 26.
    Cunningham CT, Quan H, Hemmelgarn B, et al. Exploring physician specialist response rates to web-based surveys. BMC Med Res Methodol 2015;1532.Google Scholar
  27. 27.
    Gemeinsamer Bundesausschuss (GbA). Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Qualitätssicherungs-Richtlinie Früh- und Reifgeborene/QFR-RL: (§ 7 Nachweisverfahren und Anlage 2 Anforderung zum Pflegepersonal) 2016;15. Dezember 2016. http://www.english.g-ba.de/.
  28. 28.
    Polin RA. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics. 2012;129:1006–15.CrossRefGoogle Scholar
  29. 29.
    Mukherjee A, Davidson L, Anguvaa L, Duffy DA, Kennea N. NICE neonatal early onset sepsis guidance: greater consistency, but more investigations, and greater length of stay. Arch Dis Child Fetal Neonatal Ed. 2015;100:F248–9.CrossRefGoogle Scholar
  30. 30.
    Mukherjee A, Ramalingaiah B, Kennea N, Duffy DA. Management of neonatal early onset sepsis (CG149): compliance of neonatal units in the UK with NICE recommendations. Arch Dis Child Fetal Neonatal Ed. 2015;100:F185.CrossRefGoogle Scholar
  31. 31.
    Denkel LA, Schwab F, Kola A, et al. The mother as most important risk factor for colonization of very low birth weight (VLBW) infants with extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E). J Antimicrob Chemother. 2014;69:2230–7.CrossRefGoogle Scholar
  32. 32.
    Patel SJ, Oshodi A, Prasad P, et al. Antibiotic use in neonatal intensive care units and adherence with centers for disease control and prevention 12 step campaign to prevent antimicrobial resistance. Pediatr Infect Dis J. 2009;28:1047–51.CrossRefGoogle Scholar
  33. 33.
    Spyridis N, Syridou G, Goossens H, et al. Variation in paediatric hospital antibiotic guidelines in Europe. Arch Dis Child. 2016;2016:72–6.CrossRefGoogle Scholar
  34. 34.
    Ericson JE, Thaden J, Cross HR, et al. No survival benefit with empirical vancomycin therapy for coagulase-negative staphylococcal bloodstream infections in infants. Pediatr Infect Dis J. 2015;34:371–5.CrossRefGoogle Scholar
  35. 35.
    Thaden JT, Ericson JE, Cross H, et al. Survival benefit of empirical therapy for Staphylococcus aureus bloodstream infections in infants. Pediatr Infect Dis J. 2015;34:1175–9.CrossRefGoogle Scholar
  36. 36.
    Popoola VO, Colantuoni E, Suwantarat N, et al. Active surveillance cultures and decolonization to reduce staphylococcus aureus infections in the neonatal intensive care unit. Infect Control Hosp Epidemiol. 2016;37:381–7.CrossRefGoogle Scholar
  37. 37.
    Wisgrill L, Zizka J, Unterasinger L, et al. Active surveillance cultures and targeted decolonization are associated with reduced methicillin-susceptible Staphylococcus aureus infections in VLBW infants. Neonatology. 2017;112:267–73.CrossRefGoogle Scholar
  38. 38.
    Holzmann-Pazgal G, Khan AM, Northrup TF, Domonoske C, Eichenwald EC. Decreasing vancomycin utilization in a neonatal intensive care unit. Am J Infect Control. 2015;43:1255–7.CrossRefGoogle Scholar
  39. 39.
    Le J, Nguyen T, Okamoto M, McKamy S, Lieberman JM. Impact of empiric antibiotic use on development of infections caused by extended-spectrum beta-lactamase bacteria in a neonatal intensive care unit. Pediatr Infect Dis J. 2008;27:314–8.CrossRefGoogle Scholar
  40. 40.
    Stocker M, Ferrao E, Banya W, Cheong J, Macrae D, Furck A. Antibiotic surveillance on a paediatric intensive care unit: easy attainable strategy at low costs and resources. BMC Pediatr 2012;12196.Google Scholar
  41. 41.
    Simon A, Tenenbaum T. Surveillance of multidrug-resistant Gram-negative pathogens in high-risk neonates-does it make a difference? Pediatr Infect Dis J. 2013;32:407–9.CrossRefGoogle Scholar
  42. 42.
    Seidel J, Haller S, Eckmanns T, Harder T. Routine screening for colonization by Gram-negative bacteria in neonates at intensive care units for the prediction of sepsis: systematic review and meta-analysis. J Hosp Infect. 2018 (in press).Google Scholar
  43. 43.
    Folgori L, Tersigni C, Hsia Y, et al. The relationship between Gram-negative colonization and bloodstream infections in neonates: a systematic review and meta-analysis. Clin Microbiol Infect. 2018;24:251–7.CrossRefGoogle Scholar
  44. 44.
    Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch Institut Berlin. Prävention von Gefäßkatheter-assoziierten Infektionen bei Früh- und Neugeborenen—Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robeert Koch Instituut. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61:608–26.CrossRefGoogle Scholar
  45. 45.
    Dien Bard J, McElvania TeKippe E. Diagnosis of bloodstream infections in children. J Clin Microbiol. 2016;54:1418–24.CrossRefGoogle Scholar
  46. 46.
    Berger A, Rohrmeister K, Haiden N, Assadian O, Kretzer V, Kohlhauser C. Serratia marcescens in the neonatal intensive care unit: re-emphasis of the potentially devastating sequelae. Wien Klin Wochenschr. 2002;114:1017–22.PubMedGoogle Scholar
  47. 47.
    Pineda LC, Watt KM. New antibiotic dosing in infants. Clin Perinatol. 2015;42:167–76 (ix–x).CrossRefGoogle Scholar
  48. 48.
    Pauwels S, Allegaert K. Therapeutic drug monitoring in neonates. Arch Dis Child. 2016;101:377–81.CrossRefGoogle Scholar
  49. 49.
    Fonzo-Christe C, Guignard B, Zaugg C, et al. Impact of clinical decision support guidelines on therapeutic drug monitoring of gentamicin in newborns. Ther Drug Monit. 2014;36:656–62.CrossRefGoogle Scholar
  50. 50.
    Fuchs A, Guidi M, Giannoni E, et al. Population pharmacokinetic study of gentamicin in a large cohort of premature and term neonates. Br J Clin Pharmacol. 2014;78:1090–101.CrossRefGoogle Scholar
  51. 51.
    Antolik TL, Cunningham KJ, Alabsi S, Reimer RA. Empirical gentamicin dosing based on serum creatinine levels in premature and term neonates. Am J Health Syst Pharm. 2017;74:466–72.CrossRefGoogle Scholar
  52. 52.
    Frymoyer A, Hersh AL, El-Komy MH, et al. Association between vancomycin trough concentration and area under the concentration-time curve in neonates. Antimicrob Agents Chemother. 2014;58:6454–61.CrossRefGoogle Scholar
  53. 53.
    Cole TS, Riordan A. Vancomycin dosing in children: what is the question? Arch Dis Child. 2013;98:994–7.CrossRefGoogle Scholar
  54. 54.
    Ringenberg T, Robinson C, Meyers R, et al. Achievement of therapeutic vancomycin trough serum concentrations with empiric dosing in neonatal intensive care unit patients. Pediatr Infect Dis J. 2015;34:742–7.CrossRefGoogle Scholar
  55. 55.
    Lestner JM, Hill LF, Heath PT, Sharland M. Vancomycin toxicity in neonates: a review of the evidence. Curr Opin Infect Dis. 2016;29:237–47.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.General Pediatrics and Neonatology, Children’s Hospital Medical CenterUniversity Hospital of SaarlandHomburgGermany
  2. 2.Department of Pediatrics, Children’s HospitalUniversity of LuebeckLübeckGermany
  3. 3.Department of Pediatric Hematology and Oncology, Children’s Hospital Medical CenterUniversity Hospital of SaarlandHomburg/SaarGermany

Personalised recommendations