Advertisement

Infection

, Volume 47, Issue 2, pp 317–321 | Cite as

Fluorescent in situ hybridization can be used as a complementary assay for the diagnosis of Tropheryma whipplei infection

  • Elsa Prudent
  • Guillaume Le Guenno
  • Stijn Jonckheere
  • Anne Vankeerberghen
  • Hubert Lepidi
  • Emmanouil AngelakisEmail author
  • Didier Raoult
Case Report

Abstract

Background

Immunohistochemistry and Periodic acid–Schiff (PAS) staining have been routinely used for the diagnosis of Whipple’s disease (WD). However, these methods present limitations. As a result, the last years, Fluorescence in situ hybridization (FISH) has been increasingly used as a complementary tool for the diagnosis of WD from various tissue samples.

Case report

In this study, we visualized, by FISH, Tropheryma whipplei within macrophages of a lymph node from a patient with WD. Moreover, we report in this study a patient with a pulmonary biopsy compatible with WD by PAS, immunostaining and FISH, although the specific molecular assays for T. whipplei were negative. Sequencing analysis of the 16S rDNA revealed a T. whipplei-related species with unknown classification.

Conclusion

FISH can be a valuable method for the detection of Tropheryma species in formalin-fixed paraffin-embedded tissues. FISH cannot replace the other already approved diagnostic techniques for WD, it can be used as a complementary tool and can provide supplementary information in a relatively short time.

Keywords

Tropheryma whipplei Fluorescent in situ hybridization Lymphadenopathy Respiratory infection Whipple’s disease 

Notes

Acknowledgements

This study was supported by Méditerranée-Infection and the National Research Agency under the program “Investissements d’Avenir” reference ANR-10-IAHU-03. This study was approved by the Ethics Committee of the Mediterranée-Infection foundation under the number 2016-025.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of the Mediterranée Infection foundation under the number 2016-025.

Supplementary material

15010_2018_1243_MOESM1_ESM.tif (2.6 mb)
Supplementary material 1 (TIF 2641 KB)
15010_2018_1243_MOESM2_ESM.tif (393 kb)
Supplementary material 2 (TIF 392 KB)
15010_2018_1243_MOESM3_ESM.tif (1.7 mb)
Supplementary material 3 (TIF 1741 KB)
15010_2018_1243_MOESM4_ESM.tif (2 mb)
Supplementary material 4 (TIF 2010 KB)
15010_2018_1243_MOESM5_ESM.tif (98 kb)
Supplementary material 5 (TIF 98 KB)
15010_2018_1243_MOESM6_ESM.docx (15 kb)
Supplementary material 6 (DOCX 14 KB)

References

  1. 1.
    Maizel H, Ruffin JM, Dobbins WO. Whipple’s disease: a review of 19 patients from one hospital and a review of the literature since 1950. Medicine. 1970;49:175.CrossRefPubMedGoogle Scholar
  2. 2.
    Schneider T, Moos V, Loddenkemper C, Marth T, Fenollar F, Raoult D. Whipple’s disease: new aspects of pathogenesis and treatment. Lancet Infect Dis. 2008;8:179–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Lagier J-C, Lepidi H, Raoult D, Fenollar F. Systemic Tropheryma whipplei: clinical presentation of 142 patients with infections diagnosed or confirmed in a reference center. Medicine. 2010;89:337.CrossRefPubMedGoogle Scholar
  4. 4.
    Bousbia S, Papazian L, Auffray J-P, Fenollar F, Martin C, Li W, et al. Tropheryma whipplei in patients with pneumonia. Emerg Infect Dis. 2010;16:258.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fenollar F, Lagier J-C, Raoult D. Tropheryma whipplei and Whipple’s disease. J Infect. 2014;69:103–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Fenollar F, Mediannikov O, Socolovschi C, Bassene H, Diatta G, Richet H, et al. Tropheryma whipplei bacteremia during fever in rural West Africa. Clin Infect Dis. 2010;51:515–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Morel A-S, Dubourg G, Prudent E, Edouard S, Gouriet F, Casalta J-P, et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis. 2015;34:561–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Edouard S, Fenollar F, Raoult D. The rise of Tropheryma whipplei: a 12-year retrospective study of PCR diagnoses in our reference center. J Clin Microbiol. 2012.  https://doi.org/10.1128/JCM.01517-12.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maiwald M, Von AH, Persing DH, Mitchell PP, Abdelmalek MF, Thorvilson JN, et al. Tropheryma whippelii DNA is rare in the intestinal mucosa of patients without other evidence of Whipple disease. Ann Intern Med. 2001;134:115–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Audoly G, Fenollar F, Lagier J-C, Lepidi H, Raoult D. Deglycosylation of Tropheryma whipplei biofilm and discrepancies between diagnostic results during Whipple’s disease progression. Sci Rep. 2016;6:23883.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fenollar F, Puéchal X, Raoult D. Whipple’s disease. N Engl J Med. 2007;356:55–66.CrossRefPubMedGoogle Scholar
  12. 12.
    Braubach P, Lippmann T, Raoult D, Lagier J-C, Anagnostopoulos I, Zender S, et al. Fluorescence in situ hybridization for diagnosis of Whipple’s disease in formalin-fixed paraffin-embedded tissue. Front Med. 2017;4:87.CrossRefGoogle Scholar
  13. 13.
    Geißdörfer W, Moos V, Moter A, Loddenkemper C, Jansen A, Tandler R, et al. High frequency of Tropheryma whipplei in culture-negative endocarditis. J Clin Microbiol. 2012;50:216–22.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fredricks DN, Relman DA. Localization of Tropheryma whippelii rRNA in tissues from patients with Whipple’s disease. J Infect Dis. 2001;183:1229–37.CrossRefPubMedGoogle Scholar
  15. 15.
    Prudent E, Scola BL, Drancourt M, Angelakis E, Raoult D. Molecular strategy for the diagnosis of infectious lymphadenitis. Eur J Clin Microbiol Infect Dis. 2018;37:1–8.CrossRefGoogle Scholar
  16. 16.
    Lepidi H, Costedoat N, Piette J-C, Harlé J-R, Raoult D. Immunohistological detection of Tropheryma whipplei (Whipple bacillus) in lymph nodes. Am J Med. 2002;113:334–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Prudent E, Lepidi H, Angelakis E, Raoult D. FISH and PNA FISH for the diagnosis of Q fever endocarditis and vascular infections. J Clin Microbiol. 2018.  https://doi.org/10.1128/JCM.00542-18.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vankeerberghen A, Jonckheere S, De Raeve H, Caluwe R, De Beenhouwer H. Novel Tropheryma species in a lung biopsy sample from a kidney transplant recipient. Clin Microbiol Infect. 2018;24:548.e5–548.e8.CrossRefGoogle Scholar
  19. 19.
    Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol. 2017;43:1–31.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elsa Prudent
    • 1
  • Guillaume Le Guenno
    • 2
  • Stijn Jonckheere
    • 3
  • Anne Vankeerberghen
    • 3
  • Hubert Lepidi
    • 1
  • Emmanouil Angelakis
    • 4
    • 5
    Email author
  • Didier Raoult
    • 1
  1. 1.Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée InfectionMarseilleFrance
  2. 2.Department of Internal Medicine, Hôpital EstaingCentre, Hospitaliser UniversitaireClermont-FerrandFrance
  3. 3.Laboratory of Clinical MicrobiologyOLV Hospital AalstAalstBelgium
  4. 4.Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée InfectionMarseilleFrance
  5. 5.Laboratory of Medical MicrobiologyHellenic Pasteur InstituteAthensGreece

Personalised recommendations