Advertisement

Infection

, Volume 46, Issue 5, pp 669–677 | Cite as

Diabetes was the only comorbid condition associated with mortality of invasive pneumococcal infection in ICU patients: a multicenter observational study from the Outcomerea research group

  • Maité Garrouste-Orgeas
  • Elie Azoulay
  • Stéphane Ruckly
  • Carole Schwebel
  • Etienne de Montmollin
  • Jean-Pierre Bedos
  • Bertrand Souweine
  • Guillaume Marcotte
  • Christophe Adrie
  • Dany Goldgran-Toledano
  • Anne-Sylvie Dumenil
  • Hatem Kallel
  • Samir Jamali
  • Laurent Argaud
  • Michael Darmon
  • Jean-Ralph Zahar
  • J. F. Timsit
Original Paper

Abstract

Purposes

Streptococcus pneumoniae is a leading pathogen of severe community, hospital or nursing facility infections. We sought to describe characteristics of invasive pneumococcal infection (IPI) and pneumonia (due to the high mortality of intensive care-associated pneumonia) and to report outcomes according to various types of comorbidity.

Methods

Multicenter observational cohort study on the prospective Outcomerea database, including adult patients, with a hospital stay < 48 h before ICU admission and a documented IPI within the first 72 h of ICU admission. Comorbid conditions were defined according to the Knaus and Charlson classification.

Results

Of the 20,235 patients, 5310 (26.4%) had an invasive infection, including 560/5,310 (10.6%) who had an IPI. The ICU 28-day mortality was 109/560 (19.8%). Four factors were independently associated with mortality: SOFA day 1–2: [hazard ratio (HR) 1.21; 95% confidence interval (95% CI) 1.15–1.27, p < 0.001]; maximum lactate level day 1–2: (HR 1.07, 95% CI 1.02–1.12, p = 0.006); diabetes mellitus: (HR 1.91, 95% CI 1.23–3.03, p = 0.006) and appropriate antibiotics (HR 0.28, 95% CI 0.15–0.50, p < 0.001). Comparable results were obtained when other comorbid conditions were forced into the model. Diabetes impact was more pronounced in case of micro- or macro-angiopathy (HR 4.17, 95%CI 1.68–10.54, p = 0.003), in patients ≥ 65 years old (HR 2.59, 95% CI 1.56–4.28, < 0.001) and in those with body mass index (BMI) < 25 kg/m2 (HR 2.11, 95% CI 1.10–4.06, p = 0.025).

Conclusions

Diabetes mellitus was the only comorbid condition which independently influenced mortality in patients with IPI. Its impact was more pronounced in patients with complications, aged ≥ 65 years and with BMI < 25 kg/m2.

Keywords

Diabetes mellitus Intensive care unit Critical care Invasive pneumococcal infection 

Notes

Acknowledgements

We thank Celine Feger, MD (EMIBiotech), for her assistance in preparing the manuscript, and ICUREsearch SAS for the statistical analysis.

Author contributions

MGO wrote the manuscript and MGO, EA, SR and JFT interpreted the data. All authors read the manuscript and approved the final manuscript.

Funding

The study was granted by PfizerTM which had no role in the design, conduct or data analysis of the present study or in the decision to submit the manuscript for publication.

Compliance with ethical standards

Conflict of interest

MGO: shares in ICUREsearch. JFT: scientific board: ICUREsearch, Bayer, Merk, Paratek, 3M, Gilead. Lectures for Gilead, Pfizer, Merck, Astellas. Grants from Pfizer, 3M, Merck, Astellas. EA: is part of the board of Gilead Sciences. He has received fees for lecture from Gilead, Astellas, MSD, Alexion and Baxter. His institution has received research support from Glead, Pfizer, Fisher & Payckle, Jazz pharma, Alexion and Basilea. SR, JRZ: shares in ICUREsearch, JPB: scientific board Pfizer, Lectures Pfizer, MSD. No conflict of interests: LA, GM, CS, EdM, JPB, BS, CA, DGT, ASD, HK, SJ, MD.

Supplementary material

15010_2018_1169_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 KB)

References

  1. 1.
    Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax. 2012;67:71–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Kyaw MH, Rose CE Jr, Fry AM, Singleton JA, Moore Z, Zell ER, et al. The influence of chronic illnesses on the incidence of invasive pneumococcal disease in adults. J Infect Dis. 2005;192:377–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Van Hoek AJ, Andrews N, Waight PA, Stowe J, Gates P, George R, et al. The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect. 2012;65:17–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Cilloniz C, Torres A, Manzardo C, Gabarrus A, Ambrosioni J, Salazar A, et al. Community-acquired pneumococcal pneumonia in virologically suppressed hiv-infected adult patients: a matched case-control study. Chest. 2017;152:295–303.CrossRefPubMedGoogle Scholar
  5. 5.
    Inghammar M, Engstrom G, Ljungberg B, Lofdahl CG, Roth A, Egesten A. Increased incidence of invasive bacterial disease in chronic obstructive pulmonary disease compared to the general population—a population based cohort study. BMC Infect Dis. 2014;14:163.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shea KM, Edelsberg J, Weycker D, Farkouh RA, Strutton DR, Pelton SI. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis. 2014;1:ofu024.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tomczyks T, Bennett N, Stoecker C, Gierke R, Moore M, Whitney C, et al. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥ 65 years: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2014;63:822–5.Google Scholar
  8. 8.
    Blasi F, Akova M, Bonanni P, Dartois N, Sauty E, Webber C, et al. Community-acquired pneumonia in adults: Highlighting missed opportunities for vaccination. Eur J Intern Med. 2017;37:13–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Kaplan V, Angus DC, Griffin MF, Clermont G, Scott Watson R, Linde-Zwirble WT. Hospitalized community-acquired pneumonia in the elderly: age- and sex-related patterns of care and outcome in the United States. Am J Respir Crit Care Med. 2002;165:766–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Kornum JB, Thomsen RW, Riis A, Lervang HH, Schonheyder HC, Sorensen HT. Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes Care. 2007;30:2251–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Van Hoek AJ, Andrews N, Waight PA, George R, Miller E. Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-vaccine serotypes. PLoS One. 2012;7:e39150.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mongardon N, Max A, Bougle A, Pene F, Lemiale V, Charpentier J, et al. Epidemiology and outcome of severe pneumococcal pneumonia admitted to intensive care unit: a multicenter study. Crit Care. 2012;16:R155.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Auburtin M, Porcher R, Bruneel F, Scanvic A, Trouillet JL, Bedos JP, et al. Pneumococcal meningitis in the intensive care unit: prognostic factors of clinical outcome in a series of 80 cases. Am J Respir Crit Care Med. 2002;165:713–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Hanada S, Iwata S, Kishi K, Morozumi M, Chiba N, Wajima T, et al. Host factors and biomarkers associated with poor outcomes in adults with invasive pneumococcal disease. PLoS One. 2016;11:e0147877.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.CrossRefGoogle Scholar
  16. 16.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9:591–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, et al. The logistic organ dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group JAMA. 1996;276:802–10.PubMedGoogle Scholar
  19. 19.
    Cilloniz C, Ferrer M, Liapikou A, Garcia-Vidal C, Gabarrus A, Ceccato A, et al. Acute respiratory distress syndrome in mechanically-ventilated patients with community-acquired pneumonia. Eur Respir J. 2018;29:51.Google Scholar
  20. 20.
    Ferrer M, Travierso C, Cilloniz C, Gabarrus A, Ranzani OT, Polverino E, et al. Severe community-acquired pneumonia: characteristics and prognostic factors in ventilated and non-ventilated patients. PLoS One. 2018;13:e0191721.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Singer M. The new sepsis consensus definitions (Sepsis-3): the good, the not-so-bad, and the actually-quite-pretty. Intensive Care Med. 2016;42:2027–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kupfer Y. Corticosteroids for treating sepsis. Cochrane Database Syst Rev. 2015;12:CD002243.Google Scholar
  23. 23.
    Lin D, Wei L, Ying Z. Checking the cox model with cumulative sums of martinguale based residuals. Biometrika. 1993;80:557–72.CrossRefGoogle Scholar
  24. 24.
    Torres A, Blasi F, Dartois N, Akova M. Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease. Thorax. 2015;70:984–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ricketson LJ, Nettel-Aguirre A, Vanderkooi OG, Laupland KB, Kellner JD. Factors influencing early and late mortality in adults with invasive pneumococcal disease in Calgary, Canada: a prospective surveillance study. PLoS One. 2013;8:e71924.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hirata Y, Tomioka H, Sekiya R, Yamashita S, Kaneda T, Kida Y, et al. Association of hyperglycemia on admission and during hospitalization with mortality in diabetic patients admitted for pneumonia. Intern Med. 2013;52:2431–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Magliano DJ, Harding JL, Cohen K, Huxley RR, Davis WA, Shaw JE. Excess risk of dying from infectious causes in those with Type 1 and Type 2 diabetes. Diabetes Care. 2015;38:1274–80.CrossRefPubMedGoogle Scholar
  28. 28.
    McAlister FA, Majumdar SR, Blitz S, Rowe BH, Romney J, Marrie TJ. The relation between hyperglycemia and outcomes in 2471 patients admitted to the hospital with community-acquired pneumonia. Diabetes Care. 2005;28:810–5.CrossRefPubMedGoogle Scholar
  29. 29.
    De Grooth HJ, Geenen IL, Girbes AR, Vincent JL, Parienti JJ, Oudemans-van Straaten HM. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis. Crit Care. 2017;21:38.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Soliman HM, Vincent JL. Prognostic value of admission serum lactate concentrations in intensive care unit patients. Acta Clin Belg. 2010;65:176–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Vincent JL, Sakr Y. SOFA so good for predicting long-term outcomes. Resuscitation. 2012;83:537–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Georges H, Leroy O, Vandenbussche C, Guery B, Alfandari S, Tronchon L, et al. Epidemiological features and prognosis of severe community-acquired pneumococcal pneumonia. Intensive Care Med. 1999;25:198–206.CrossRefPubMedGoogle Scholar
  33. 33.
    Moine P, Vercken JB, Chevret S, Gajdos P. Severe community-acquired pneumococcal pneumonia. The French Study Group of Community-Acquired Pneumonia in ICU. Scand J Infect Dis. 1995;27:201–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35:2262–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Van den Berghe G, Bouillon R, Mesotten D. Glucose control in critically ill patients. N Engl J Med. 2009;361:89 (author reply 91–92).CrossRefPubMedGoogle Scholar
  36. 36.
    Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, et al. Clinical review: Intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab. 2009;94:3163–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Calendrier des vaccinations et recommendations vaccinales 2018 en France. 2018. http://solidarites-sante.gouv.fr/prevention-en-sante/preserver-sa-sante/vaccination/calendrier-vaccinal.
  38. 38.
    Prevention CfDCa. Pneumococcal vaccination. 2016. https://www.cdc.gov/vaccines/vpd/pneumo/.
  39. 39.
    Vila-Corcoles A, Ochoa-Gondar O, Rodriguez-Blanco T, Raga-Luria X, Gomez-Bertomeu F, Group ES. Epidemiology of community-acquired pneumonia in older adults: a population-based study. Respir Med. 2009;103:309–16.CrossRefPubMedGoogle Scholar
  40. 40.
    Almirall J, Bolibar I, Serra-Prat M, Roig J, Hospital I, Carandell E, et al. New evidence of risk factors for community-acquired pneumonia: a population-based study. Eur Respir J. 2008;31:1274–84.CrossRefPubMedGoogle Scholar
  41. 41.
    Huijts SM, Van Werkhoven CH, Bolkenbaas M, Grobbee DE, Bonten MJM. Post-hoc analysis of a randomized controlled trial: diabetes mellitus modifies the efficacy of the 13-valent pneumococcal conjugate vaccine in elderly. Vaccine. 2017;35:4444–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Vesin A, Azoulay E, Ruckly S, Vignoud L, Rusinova K, Benoit D, et al. Reporting and handling missing values in clinical studies in intensive care units. Intensive Care Med. 2013;39:1396–404.CrossRefPubMedGoogle Scholar
  43. 43.
    Alanee SR, McGee L, Jackson D, Chiou CC, Feldman C, Morris AJ, et al. Association of serotypes of Streptococcus pneumoniae with disease severity and outcome in adults: an international study. Clin Infect Dis. 2007;45:46–51.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maité Garrouste-Orgeas
    • 1
    • 2
    • 3
  • Elie Azoulay
    • 4
  • Stéphane Ruckly
    • 3
  • Carole Schwebel
    • 5
  • Etienne de Montmollin
    • 6
  • Jean-Pierre Bedos
    • 7
  • Bertrand Souweine
    • 8
  • Guillaume Marcotte
    • 9
  • Christophe Adrie
    • 10
  • Dany Goldgran-Toledano
    • 11
  • Anne-Sylvie Dumenil
    • 12
  • Hatem Kallel
    • 13
  • Samir Jamali
    • 14
  • Laurent Argaud
    • 15
  • Michael Darmon
    • 16
    • 17
  • Jean-Ralph Zahar
    • 18
  • J. F. Timsit
    • 1
    • 3
    • 19
  1. 1.UMR 1137, IAME Team 5, DeSCID: Decision Sciences in Infectious Diseases, Control and Care, Sorbonne Paris CitéInserm/Paris Diderot UniversityParisFrance
  2. 2.Medical UnitFrench and British InstituteLevallois-PerretFrance
  3. 3.Outcomerea Research GroupParisFrance
  4. 4.Medical Intensive Care UnitSaint Louis University HospitalParisFrance
  5. 5.Medical Intensive Care UnitAlbert Michallon HospitalGrenobleFrance
  6. 6.Medical-Surgical Intensive Care UnitDelafontaine HospitalSaint-DenisFrance
  7. 7.Medical Intensive Care UnitAndré Mignot HospitalLe ChesnayFrance
  8. 8.Medical Intensive Care UnitGabriel Montpied University HospitalClermont-FerrandFrance
  9. 9.Surgical ICUEdouard Herriot University HospitalLyonFrance
  10. 10.Physiology department, Cochin University HospitalParis Descartes UniversityParisFrance
  11. 11.Medical-Surgical Intensive Care UnitMontfermeilFrance
  12. 12.Medical Intensive Care UnitAntoine Béclère HospitalClamartFrance
  13. 13.Medical-Surgical UnitAndrée Rosemon HospitalCayenneFrance
  14. 14.Medical-Surgical UnitSud-Essonne HospitalDourdanFrance
  15. 15.Medical Intensive Care UnitEdouard Herriot University HospitalLyonFrance
  16. 16.Medical Intensive Care UnitSaint Etienne University HospitalSaint-ÉtienneFrance
  17. 17.Jacques Lisfranc Medicine UniversityJean Monnet UniversitySaint-ÉtienneFrance
  18. 18.Infection Control UnitAvicenne University HospitalBobignyFrance
  19. 19.Medical and Infectious Diseases Intensive Care Unit, Bichat University HospitalParis Diderot UniversityParisFrance

Personalised recommendations