Advertisement

Allergo Journal

, Volume 28, Issue 6, pp 52–63 | Cite as

Update of reference values for IgG antibodies against typical antigens of hypersensitivity pneumonitis

Data of a German multicentre study
  • Monika RaulfEmail author
  • Marcus Joest
  • Ingrid Sander
  • Frank Hoffmeyer
  • Dennis Nowak
  • Uta Ochmann
  • Alexandra Preisser
  • Jens Schreiber
  • Joachim Sennekamp
  • Dirk Koschel
Original

Abstract

Background

Specific (s)IgG antibodies against environmental and occupational antigens, especially from bacteria, moulds, yeasts, birds and chemicals play an important role for hypersensitivity pneumonitis (HP). An increased serum level of sIgG is one criterion in the diagnostic procedure of HP and crucial for the detection of the triggering antigen for successful avoidance of further exposure. In contrast to specific IgE, sIgG concentrations in healthy individuals vary greatly depending on the antigen, which makes it difficult to differentiate from patients with HP. The aim of this study is to update or establish sIgG-reference values for important HP antigens in a healthy blood donor group.

Methods

Therefore a study including six clinical centres in Germany was conducted to collect sera from 121 subjects without any signs of HP and without obvious exposure to potential HP antigens. Specific IgG to 32 typical HP antigens were quantified by ImmunoCAP (ThermoFisher Scientific; Phadia, Uppsala, Sweden). For validation selected measurements were repeated, total IgG was determined, sera were tested for unspecific binding with the human serum albumin ImmunoCAP Ro401, and influence of potential confounders was analysed. Statistical distribution of the antigen-specific IgG values was evaluated and the nonparametric method of percentile calculation was applied.

Results

The levels of IgG antibodies to the different antigens varied considerably in the study group from < 0.02 to 726 mgA/L. Low sIgG levels were found against the chemicals and the highest levels to fungal antigens, especially to Aspergillus fumigatus and Botrytis cinerea. For three isocyanates, three acid anhydrides, Trichosporon pullulans and Acremonium kiliense reference values were proposed for the first time. For several avian antigens, moulds, and bacteria pre-existing reference values nearly could be confirmed without significant deviations, but already the 90 % quantile for sIgG against Penicillium chrysogenum, Aspergillus fumigatus and pigeon antigen (Ge91) clearly exceeded the pre-existing values. In contrast, the 97.5 % quantile value for Candida albicans was nearly half of the pre-existing cut-off value.

Discussion

In most cases specific IgG values were not significantly influenced by smoking and gender and most of them were unaffected by age. For implementation of these sIgG reference values into the routine diagnosis of HP, we provide an online available calculator to rank measured sIgG concentrations to the 32 different ImmunoCAP antigens.

Keywords

antigen specific IgG diagnosis hypersensitivity pneumonitis reference values extrinsic allergic alveolitis 

Abbreviations

CV

Coefficient of variation

EAA

Extrinsic allergic alveolitis

FEIA

Fluorescent enzyme immunoassay

HSA

Human serum albumin

HP

Hypersensitivity pneumonitis

MBP

Maltose-binding protein

mgA/L

Milligrams of antigen-specific IgG per liter

SD

Standard deviation

(s)IgG

Specific immunoglobulin G

Notes

Acknowledgements

The authors are thankful for the support of ThermoFisher Scientific, who had provided ImmunoCAPs/reagents free of charge. Neither the design of the study nor the evaluation of the data were influenced by ThermoFisher Scientific. We thank C. Bittner, Hamburg, for help in collecting the samples, B. Kendzia, Bochum, for statistical support and U. Meurer, Bochum, for skilful technical assistance.

Ethical approval

The study design and the protocol were reviewed and approved by the ethical committee of the Technische Universität Dresden (EK 195052014) in accordance with the Declaration of Helsinki and ethical approval was obtained from the local ethic committee of each centre.

References

  1. 1.
    Riario Sforza GG, Marinou A. Hypersensitivity pneumonitis: a complex lung disease. Clin Mol Allergy. 2017;15:6. https://doi.org/10.1186/s12948-017-0062-7Google Scholar
  2. 2.
    Nogueira R,Melo N,Novais E, Bastos H,Martins N, Delgado L, et al. Hypersensitivity pneumonitis: antigen diversity anddiseaseimplications. Pulmonol. 2018;https://doi.org/ 10.1016/j.pulmoe.2018.07.003Google Scholar
  3. 3.
    Cormier Y. Hypersensitivity pneumonitis (extrinsic allergic alveolitis): a Canadian historical perspective. Can Respiratory J. 2014;21:277–8CrossRefGoogle Scholar
  4. 4.
    Girard M, Cormier Y. Hypersensitivity pneumonitis. Curr Opin Allergy Clin Immunol. 2010;10:99–103CrossRefGoogle Scholar
  5. 5.
    Sennekamp J, Müller-Wening D, Amthor M, Baur X, Bergmann K-C, Costabel U, et al. Empfehlungen zur Diagnostik der exogen-allergischen Alveolitis. Arbeitgemeinschaft Exogen-Allergische Alveolitis der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V. (DGP) und der Deutschen Gesellschaft für Allergologie und Klinische Immunologie (DGAKI). Pneumologie. 2007;61:52–6. Guidelines for diagnosing extrinsic allergic alveolitis (hypersensitivity pneumonitis) (German Extrinsic Allergic Alveolitis Study Group)CrossRefGoogle Scholar
  6. 6.
    Quirce S, Vandenplas O, Campo P, Cruz MJ, deBlay F, Koschel D, et al. Occupational hypersensitivity pneumonitis. An EAACI positionpaper. Allergy 2016;71:765–79CrossRefGoogle Scholar
  7. 7.
    Kränke B, Woltsche M, Woltsche-Kahr I, Aberer W. IgG-Antikörper gegen „EAA-spezifische Umweltantigene“ Die Problematik der Normalwertdefinition. Allergologie 2001;24:145–54Google Scholar
  8. 8.
    Koschel D, Lutzkendorf L, Wiedemann B, Hoffken G. Antigen-specific IgG antibodiesin feather duvet lung. Eur J Clin Invest 2010;40:797–802CrossRefGoogle Scholar
  9. 9.
    Lopata AL, Schinkel M, Potter PC, Jeebhay MF, Hashemi C, Johansson SG, et al. Qualitative andquantitative evaluation of bird-specific IgG antibodies. Int Arch Allergy Immunol 2004;134:173–8CrossRefGoogle Scholar
  10. 10.
    van Hoeyveld E, Dupont L, Bossuyt X. Quantification of IgG antibodies to Aspergillus fumigatus andpigeon antigens by ImmunoCAP technology:analternative to theprecipitation technique? Clin Chem 2006;52:1785–93CrossRefGoogle Scholar
  11. 11.
    Sennekamp J, Lehmann E, Joest M. Berufsbedingte exogen allergische Alveolitis. Arbeitsmed Sozialmed Umweltmed 2015;50:38–52Google Scholar
  12. 12.
    McSharry C, Dye GM, Ismail T, Anderson K, Spiers EM, Boyd G. Quantifying serum antibodyinbird fanciers’hypersensi tivitypneumonitis. BmcPulmMed 2006;6:16. http://www.biomedcentral.com/1471-2466/6/16Google Scholar
  13. 13.
    Bañales JL, Vázquez L, Mendoza F, Baltazares M, Raymond Y, Nava A, et al. On the correct determination of reference values for serum antibodies against pigeon serum antigen using a group of healthy blood donors. Arch Med Res. 1997;28:289–91PubMedGoogle Scholar
  14. 14.
    Rodrigo MJ, Benavent MI, Cruz MJ, Rosell M,Murio C, Pascual C, Morell F. Detection of specific antibodies to pigeon serum and bloom antigens by enzyme linked immunosorbent assayinpigeonbreeder’sdisease. OccupEnvironMed. 2000;57:159–64Google Scholar
  15. 15.
    Sennekamp H-J. Extrinsic allergic alveolitis, Hypersensitivity pneumonitis. Munich, Orlando: Dustri-Verl. Feistle; 2004. ISBN 3-87185-309-7Google Scholar
  16. 16.
    Makkonen K, Viitala KI, Parkkila S, Niemelä O. Serum IgG and IgE antibodies against mold-derived antigens in patients with symptoms of hypersensitivity. Clin Chim Acta. 2001;305:89–98CrossRefGoogle Scholar
  17. 17.
    Bernstein DI, Ott MG, Woolhiser M, Lummus Z, Graham C. Evaluation of antibody binding to diisocyanate protein conjugates in a general population. Ann Allergy Asthma Immunol. 2006;97:357–64CrossRefGoogle Scholar
  18. 18.
    Pronk A, Preller L, Raulf-Heimsoth M, Jonkers ICL, Lammers J-W, Wouters IM, et al. Respiratory symptoms, sensitization, and exposure response relationships in spray painters exposed to isocyanates. Am J RespirCritCareMed. 2007;176:1090–7Google Scholar
  19. 19.
    Hemmer W, Altmann F, Holzweber F, Gruber C, Wantke F, Wöhrl S. ImmunoCAP cellulose displays cross-reactive carbohydrate determinant (CCD) epitopes and can cause false-positive test results in patients with high anti-CCD IgE antibody levels. J Allergy Clin Immunol. 2018;141:372–81CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Monika Raulf
    • 1
    Email author
  • Marcus Joest
    • 2
  • Ingrid Sander
    • 1
  • Frank Hoffmeyer
    • 1
  • Dennis Nowak
    • 3
  • Uta Ochmann
    • 3
  • Alexandra Preisser
    • 4
  • Jens Schreiber
    • 5
  • Joachim Sennekamp
    • 2
  • Dirk Koschel
    • 6
    • 7
  1. 1.Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen UnfallversicherungInstitut der Ruhr-Universität Bochum (IPA)BochumGermany
  2. 2.Malteser Lung- und Allergy Centre BonnBonnGermany
  3. 3.Institute and Outpatient Clinic for OccupationalSocial and Environmental Medicine University Hospital (LMU), Comprehensive Pneumology Center Munich (CPC-M), Member DZL, German Center for Lung ResearchMunichGermany
  4. 4.Institute for Occupational and Maritime MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  5. 5.University Clinic of PneumologyMagdeburgGermany
  6. 6.Department of Pulmonary Diseases, Fachkrankenhaus CoswigCentre for Pulmonary Diseases and Thoracic SurgeryCoswigGermany
  7. 7.Division of Pulmonology, Medical Department IUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany

Personalised recommendations