Advertisement

InFo Hämatologie + Onkologie

, Volume 22, Issue 11, pp 10–15 | Cite as

Schwerpunkt Pankreaskarzinom

Pathologie des PDAC: Übersicht und Neues

  • Anna Melissa SchlitterEmail author
  • Atsuko Kasajima
  • Claudia Groß
  • Björn Konukiewitz
  • Günter Klöppel
Schwerpunkt
  • 7 Downloads

Mit dieser Übersicht erhalten Sie einen kurzen Überblick über den aktuellen Stand und alle wichtigen Aspekte der Pathologie des duktalen Adenokarzinoms des Pankreas (PDAC). Die Übersicht soll alle behandelnden Ärzte in die Lage versetzen, den Pathologiebefund zum PDAC interpretieren zu können.

Literatur

  1. 1.
    Hruban RH et al. Pancreatic ductal adenocarcinoma. In: Board TWCoTE (ed) WHO Classification of Tumours. Digestive System Tumours. 2019. IARC Press: Lyon; 322–332Google Scholar
  2. 2.
    Fitzgerald TL et al. Changing incidence of pancreatic neoplasms: a 16-year review of statewide tumor registry. Pancreas. 2008;37(2):134–8CrossRefGoogle Scholar
  3. 3.
    He J et al. 2564 resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB (Oxford). 2014;16(1):83–90CrossRefGoogle Scholar
  4. 4.
    Schlitter AM et al. Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): Identification of prognostic subtypes. Sci Rep. 2017;7:41064CrossRefGoogle Scholar
  5. 5.
    Adsay V et al. Foamy gland pattern of pancreatic ductal adenocarcinoma: a deceptively benign-appearing variant. Am J Surg Pathol. 2000;24(4):493–504CrossRefGoogle Scholar
  6. 6.
    Lüttges J et al. The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol. 2000;191(2):154–61CrossRefGoogle Scholar
  7. 7.
    Basturk O et al. A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol. 2015;39(12):1730–41CrossRefGoogle Scholar
  8. 8.
    Aichler M et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol. 2012;226(5):723–34CrossRefGoogle Scholar
  9. 9.
    Esposito I et al. [New insights into the origin of pancreatic cancer. Role of atypical flat lesions in pancreatic carcinogenesis]. Pathologe. 2012;33 Suppl 2:189–93CrossRefGoogle Scholar
  10. 10.
    Klöppel G et al. Intraductal neoplasms of the pancreas. Semin Diagn Pathol. 2014;31(6):452–66CrossRefGoogle Scholar
  11. 11.
    Schlitter AM et al. [Intraductal papillary neoplasms of the bile duct (IPNB). Diagnostic criteria, carcinogenesis and differential diagnostics]. Pathologe. 2013;34 Suppl 2:235–40CrossRefGoogle Scholar
  12. 12.
    Adsay NV et al. Pathogenesis of colloid (pure mucinous) carcinoma of exocrine organs: Coupling of gel-forming mucin (MUC2) production with altered cell polarity and abnormal cell-stroma interaction may be the key factor in the morphogenesis and indolent behavior of colloid carcinoma in the breast and pancreas. Am J Surg Pathol. 2003;27(5):571–8CrossRefGoogle Scholar
  13. 13.
    Chintanaboina J et al. Autoimmune Pancreatitis: A Diagnostic Challenge for the Clinician. South Med J. 2015;108(9):579–89CrossRefGoogle Scholar
  14. 14.
    Brierley JD et al. TNM Classification of Malignant Tumours, 8th Edition. 2017. John Wiley & Sons: HobokenGoogle Scholar
  15. 15.
    Demir IE et al. R0 Versus R1 Resection Matters after Pancreaticoduodenectomy, and Less after Distal or Total Pancreatectomy for Pancreatic Cancer. Ann Surg. 2018;268(6):1058–68CrossRefGoogle Scholar
  16. 16.
    Esposito I et al. Most pancreatic cancer resections are R1 resections. Ann Surg Oncol. 2008;15(6):1651–60CrossRefGoogle Scholar
  17. 17.
    Schlitter AM, Esposito I. Definition of microscopic tumor clearance (r0) in pancreatic cancer resections. Cancers (Basel). 2010;2(4):2001–10CrossRefGoogle Scholar
  18. 18.
    Seufferlein T et al. [S3-guideline exocrine pancreatic cancer]. Z Gastroenterol. 2013;51(12):1395–440CrossRefGoogle Scholar
  19. 19.
    Chatterjee D et al. Histologic grading of the extent of residual carcinoma following neoadjuvant chemoradiation in pancreatic ductal adenocarcinoma: a predictor for patient outcome. Cancer. 2012;118(12):3182–90CrossRefGoogle Scholar
  20. 20.
    Haeberle L, Esposito I. Pathology of pancreatic cancer. Transl Gastroenterol Hepatol. 2019;4:50CrossRefGoogle Scholar
  21. 21.
    Verbeke C et al. Pathology assessment of pancreatic cancer following neoadjuvant treatment: Time to move on. Pancreatology. 2018;18(5):467–76CrossRefGoogle Scholar
  22. 22.
    Zhao Q et al. Pathologic complete response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma is associated with a better prognosis. Ann Diagn Pathol. 2012;16(1):29–37CrossRefGoogle Scholar
  23. 23.
    Sinn BV et al. KRAS mutations in codon 12 or 13 are associated with worse prognosis in pancreatic ductal adenocarcinoma. Pancreas. 2014;43(4):578–83CrossRefGoogle Scholar
  24. 24.
    Heining C et al. NRG1 Fusions in KRAS Wild-Type Pancreatic Cancer. Cancer Discov. 2018;8(9):1087–95CrossRefGoogle Scholar
  25. 25.
    Jones MR et al. NRG1 Gene Fusions Are Recurrent, Clinically Actionable Gene Rearrangements in KRAS Wild-Type Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2019;25(15):4674–81PubMedGoogle Scholar
  26. 26.
    Jones S et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6CrossRefGoogle Scholar
  27. 27.
    Bailey P et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52CrossRefGoogle Scholar
  28. 28.
    Collisson EA et al. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–20CrossRefGoogle Scholar
  29. 29.
    Collisson EA et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3CrossRefGoogle Scholar
  30. 30.
    Moffitt RA et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78CrossRefGoogle Scholar
  31. 31.
    Waddell N et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501CrossRefGoogle Scholar
  32. 32.
    Muckenhuber A et al. Pancreatic Ductal Adenocarcinoma Subtyping Using the Biomarkers Hepatocyte Nuclear Factor-1A and Cytokeratin-81 Correlates with Outcome and Treatment Response. Clin Cancer Res. 2018;24(2):351–9CrossRefGoogle Scholar
  33. 33.
    Noll EM et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat Med. 2016;22(3):278–87CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Anna Melissa Schlitter
    • 1
    Email author
  • Atsuko Kasajima
    • 1
  • Claudia Groß
    • 1
  • Björn Konukiewitz
    • 1
  • Günter Klöppel
    • 1
  1. 1.Institut für Pathologie der Technischen Universität MünchenMünchenDeutschland

Personalised recommendations