Advertisement

InFo Hämatologie + Onkologie

, Volume 22, Issue 6, pp 47–55 | Cite as

Von Tyrosinkinase- und BCL2-Hemmern bis zur CART-Zell-Behandlung

Neue Therapiemöglichkeiten für Patienten mit CLL

  • Laura Beckmann
  • Michael Hallek
  • Lukas P. FrenzelEmail author
zertifizierte fortbildung

Zusammenfassung

Die Therapie der chronischen lymphatischen Leukämie (CLL) befindet sich im Wandel. Durch zunehmendes Verständnis der pathophysiologischen Grundlagen können neue Substanzen, darunter immuntherapeutische Ansätze und selektive Inhibitoren, entwickelt werden. Im März 2018 wurde die neue AWMF-S3-Leitlinie zur Therapie der CLL veröffentlicht, in der der Einsatz dieser neuen Substanzen in bestimmten Indikationen vorgesehen ist.

Literatur

  1. 1.
    Hallek M et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56CrossRefGoogle Scholar
  2. 2.
    Rai KR et al. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46(2):219–34PubMedGoogle Scholar
  3. 3.
    Binet JL et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48(1):198–206CrossRefGoogle Scholar
  4. 4.
    The International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90CrossRefGoogle Scholar
  5. 5.
    Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. Diagnostik, Therapie und Nachsorge für Patienten mit einer chronisch lymphatischen Leukämie. 2018 [29.08.2018]; https://www.awmf.org/leitlinien/detail/ll/018032OL.html
  6. 6.
    Hallek M et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74CrossRefGoogle Scholar
  7. 7.
    Boross P, Leusen JH. Mechanisms of action of CD20 antibodies. Am J Cancer Res. 2012;2(6):676–90PubMedPubMedCentralGoogle Scholar
  8. 8.
  9. 9.
    Eichhorst B et al. Firstline chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42CrossRefGoogle Scholar
  10. 10.
    Hillmen P et al. Rituximab plus chlorambucil as first-line treatment for chronic lymphocytic leukemia: Final analysis of an open-label phase II study. J Clin Oncol. 2014;32(12):1236–41CrossRefGoogle Scholar
  11. 11.
    Furman RR et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007CrossRefGoogle Scholar
  12. 12.
    Kasi PM et al. Clinical review: Serious adverse events associated with the use of rituximab — a critical care perspective. Crit Care. 2012;16(4):231CrossRefGoogle Scholar
  13. 13.
    Goede V et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia. 2015;29(7):1602–4CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2(12):945–56CrossRefGoogle Scholar
  16. 16.
    Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 2013;34(12):592–601CrossRefGoogle Scholar
  17. 17.
    Herman SE et al. Phosphatidylinositol 3-kinase-β inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–88CrossRefGoogle Scholar
  18. 18.
    Honigberg LA et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and Bcell malignancy. Proc Natl Acad Sci U S A. 2010;107(29):13075–80CrossRefGoogle Scholar
  19. 19.
    O’Brien S et al. Single-agent ibrutinib in treatmentnaive and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131(17): 1910–9CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Scheers E et al. Absorption, metabolism, and excretion of oral (1)(4)C radiolabeled ibrutinib: an open-label, phase I, singledose study in healthy men. Drug Metab Dispos. 2015;43(2):289–97CrossRefGoogle Scholar
  22. 22.
    de Jong J et al. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants. Pharmacol Res Perspect. 2015;3(4):e00156CrossRefGoogle Scholar
  23. 23.
    Woyach JA et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123(12):1810–7CrossRefGoogle Scholar
  24. 24.
    Shatzel JJ et al. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost. 2017;15(5):835–47CrossRefGoogle Scholar
  25. 25.
    Byrd JC et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):323–32CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Lannutti BJ et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591–4CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood. 2016;128(3):331–6CrossRefGoogle Scholar
  30. 30.
    Bundesinstitut für Arzneimittel und Medizinprodukte. RoteHandBrief zu Zydelig® (Idelalisib): Einschränkungen für die Anwendung. 2016 [28.08.2018]; https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2016/rhbzydelig.html
  31. 31.
    Hanada M et al. Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82(6):1820–8PubMedGoogle Scholar
  32. 32.
    Souers AJ et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Stilgenbauer S et al. Venetoclax for Patients With Chronic Lymphocytic Leukemia With 17p Deletion: Results From the Full Population of a Phase II Pivotal Trial. J Clin Oncol. 2018;36(19):1973–80CrossRefGoogle Scholar
  35. 35.
    Davids MS et al. Comprehensive Safety Analysis of Venetoclax Monotherapy for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia. Clin Cancer Res. 2018;24(18):4371–9CrossRefGoogle Scholar
  36. 36.
    Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10(5):267–76CrossRefGoogle Scholar
  37. 37.
    Kalos M et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73CrossRefGoogle Scholar
  38. 38.
    Porter D et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139CrossRefGoogle Scholar
  39. 39.
    Fraietta JA et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71CrossRefGoogle Scholar
  40. 40.
    Gong J et al. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8CrossRefGoogle Scholar
  41. 41.
    Ding W et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27CrossRefGoogle Scholar
  42. 42.
    Woyach JA et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N Engl J Med. 2018;379(26):2517–28CrossRefGoogle Scholar
  43. 43.
    Wendtner CM et al. Chronische Lymphatische Leukämie. 2019 [26.05.2019]; Available from: https://www.onkopedia.com/de/onkopedia/guidelines/chronischelymphatischeleukaemiecll/@@view/html/index.html.Google Scholar
  44. 44.
    Woyach JA et al. Ibrutinib Regimen versus Chemoimmunotherapy in Older Patients with Untreated CLL. N Engl J Med. 2018;379(26):2517–28. Epub 2018/12/07.CrossRefGoogle Scholar
  45. 45.
    Seymour JF et al. Venetoclax-Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N Engl J Med. 2018;378(12):1107–20. Epub 2018/03/22.CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Laura Beckmann
    • 1
  • Michael Hallek
    • 1
  • Lukas P. Frenzel
    • 1
    Email author
  1. 1.Klinik I für Innere MedizinUniversitätsklinikum Köln (AöR)KölnDeutschland

Personalised recommendations