Advertisement

InFo Hämatologie + Onkologie

, Volume 22, Issue 4, pp 45–49 | Cite as

BiTE, CAR-T und Co.

Immuntherapien jenseits der Checkpointinhibition

  • Sebastian Kobold
zertifizierte fortbildung
  • 7 Downloads

Zusammenfassung

Nach den Checkpointinhibitoren erweitern bispezifische Antikörper und CAR-T-Zellen das immuntherapeutische onkologische Arsenal, vor allem bei hämatologischen Neoplasien. Was sind die Wirkprinzipien, Nebenwirkungen und Evidenzlagen dieser neuen Therapien? Ein Überblick.

Literatur

  1. 1.
    Kobold S et al. Immunotherapy in Tumors. Dtsch Arztebl Int. 2015;112(48):809–15PubMedPubMedCentralGoogle Scholar
  2. 2.
    Pardoll DM et al. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64CrossRefGoogle Scholar
  3. 3.
    Kobold S et al. Immuno-Oncology: A Brief Overview. Dtsch Med Wochenschr. 2018;143(14):1006–1013CrossRefGoogle Scholar
  4. 4.
    Tang J et al. Trends in the global immuno-oncology landscape. Nat Rev Drug Discov. 2018; https://doi.org/10.1038/nrd.2018.167Google Scholar
  5. 5.
    Kobold S et al. Rationale for Combining Bispecific T Cell Activating Antibodies With Checkpoint Blockade for Cancer Therapy. Front Oncol. 2018;8:285CrossRefGoogle Scholar
  6. 6.
    Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4CrossRefGoogle Scholar
  7. 7.
    Topp MS et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66CrossRefGoogle Scholar
  8. 8.
    Kantarjian H et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376(9):836–47CrossRefGoogle Scholar
  9. 9.
    Heiss MM et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127(9):2209–21CrossRefGoogle Scholar
  10. 10.
    Sebastian M et al. Treatment of non-small cell lung cancer patients with the trifunctional monoclonal antibody catumaxomab (anti-EpCAM x anti-CD3): a phase I study. Cancer Immunol Immunother. 2007;56(10):1637–44CrossRefGoogle Scholar
  11. 11.
    Cadilha B et al. Enabling T Cell Recruitment to Tumours as a Strategy for Improving Adoptive T Cell Therapy. Eur Oncol Haematol. 2017;13(1):8Google Scholar
  12. 12.
    Morgan RA et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51CrossRefGoogle Scholar
  13. 13.
    Tokarew N et al. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer. 2019;120(1):26–37CrossRefGoogle Scholar
  14. 14.
    Maude SL et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48CrossRefGoogle Scholar
  15. 15.
    Neelapu SS et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017 Dec 28;377(26):2531–2544CrossRefGoogle Scholar
  16. 16.
    Schuster SJ et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2019;380(1):45–56CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Sebastian Kobold
    • 1
  1. 1.Center of Integrated Protein Science Munich (CIPS-M) und Abteilung für Klinische Pharmakologie, Medizinische Klinik und Poliklinik IVKlinikum der Universität München, Mitglied des Deutschen Zentrums für LungenforschungMünchenDeutschland

Personalised recommendations