Advertisement

Tissue Engineering and Regenerative Medicine

, Volume 16, Issue 4, pp 365–384 | Cite as

Overview of Urethral Reconstruction by Tissue Engineering: Current Strategies, Clinical Status and Future Direction

  • Zahra Rashidbenam
  • Mohd Hafidzul Jasman
  • Pezhman Hafez
  • Guan Hee Tan
  • Eng Hong Goh
  • Xeng Inn Fam
  • Christopher Chee Kong Ho
  • Zulkifli Md Zainuddin
  • Reynu Rajan
  • Fatimah Mohd Nor
  • Mohamad Aznan Shuhaili
  • Nik Ritza Kosai
  • Farrah Hani Imran
  • Min Hwei NgEmail author
Review Article

Abstract

BACKGROUND:

Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering.

METHODs:

Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database.

RESULTS:

Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering.

CONCLUSION:

Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.

Keywords

Scaffold Tissue engineering Urethral stricture Urethral reconstruction 

Notes

Acknowledgement

This review paper was supported by grants from Universiti Kebangsaan Malaysia (GUP-2017-092 and FF-2017-227).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no financial conflicts of interest regarding the publication of this paper.

Ethical statement

There are no animal and human experiments carried out for this article.

References

  1. 1.
    Orabi H, Bouhout S, Morissette A, Rousseau A, Chabaud S, Bolduc S. Tissue engineering of urinary bladder and urethra: advances from bench to patients. ScientificWorldJournal. 2013;2013:154564.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Orabi H, Goulet CR, Fradette J, Bolduc S. Adipose-derived stem cells—are they the optimal cell source for urinary tract regeneration? In: Eberli D, editor. Cells and biomaterials in regenerative medicine. London: IntechOpen; 2014.  https://doi.org/10.5772/59223.CrossRefGoogle Scholar
  3. 3.
    Chung YG, Tu D, Franck D, Gil ES, Algarrahi K, Adam RM, et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLoS One. 2014;9:e91592.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    de Kemp V, de Graaf P, Fledderus JO, Ruud Bosch JL, de Kort LM. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLoS One. 2015;10:e0118653.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mangera A, Chapple CR. Tissue engineering in urethral reconstruction—an update. Asian J Androl. 2013;15:89–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Rogovaya OS, Fayzulin AK, Vasiliev AV, Kononov AV, Terskikh VV. Reconstruction of rabbit urethral epithelium with skin keratinocytes. Acta Naturae. 2015;7:70–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Oikarinen A, Sandberg M, Hurskainen T, Kinnunen T, Kallioinen M. Collagen biosynthesis in lichen sclerosus et atrophicus studied by biochemical and in situ hybridization techniques. Acta Derm Venereol Suppl (Stockh). 1991;162:3–12.Google Scholar
  9. 9.
    Xue JD, Gao J, Fu Q, Feng C, Xie H. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: a systematic review and meta-analysis. Exp Biol Med (Maywood). 2016;241:1416–28.CrossRefGoogle Scholar
  10. 10.
    Mahfouz W, Elsalmy S, Corcos J, Fayed AS. Fundamentals of bladder tissue engineering. Afr J Urol. 2013;19:51–7.CrossRefGoogle Scholar
  11. 11.
    Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int. 2007;99:1162–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Jiang S, Xu Z, Zhao Y, Yan L, Zhou Z, Gu G. Urethral reconstruction using mesothelial cell-seeded autogenous granulation tissue tube: an experimental study in male rabbits. Biomed Res Int. 2017;2017:1850256.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bhargava S, Patterson JM, Inman RD, MacNeil S, Chapple CR. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol. 2008;53:1263–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Orabi H, Aboushwareb T, Zhang Y, Yoo JJ, Atala A. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol. 2013;63:531–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Mousa NA, Abou-Taleb HA, Orabi H. Stem cell applications for pathologies of the urinary bladder. World J Stem Cells. 2015;7:815–22.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Subramaniam R, Hinley J, Stahlschmidt J, Southgate J. Tissue engineering potential of urothelial cells from diseased bladders. J Urol. 2011;186:2014–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Osborn SL, Thangappan R, Luria A, Lee JH, Nolta J, Kurzrock EA. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med. 2014;3:610–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lv X, Guo Q, Han F, Chen C, Ling C, Chen W, et al. Electrospun poly(l-lactide)/poly(ethylene glycol) scaffolds seeded with human amniotic mesenchymal stem cells for urethral epithelium repair. Int J Mol Sci. 2016;17:E1262.CrossRefPubMedGoogle Scholar
  20. 20.
    Tian H, Bharadwaj S, Liu Y, Ma PX, Atala A, Zhang Y. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A. 2010;16:1769–79.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu J, Huang J, Lin T, Zhang C, Yin X. Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro. Biochem Biophys Res Commun. 2009;390:931–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Qin D, Long T, Deng J, Zhang Y. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther. 2014;5:69.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu JS, Bury MI, Fuller NJ, Sturm RM, Ahmad N, Sharma AK. Bone marrow stem/progenitor cells attenuate the inflammatory milieu following substitution urethroplasty. Sci Rep. 2016;6:35638.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Blasi A, Martino C, Balducci L, Saldarelli M, Soleti A, Navone SE, et al. Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vasc Cell. 2011;3:5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leto Barone AA, Khalifian S, Lee WP, Brandacher G. Immunomodulatory effects of adipose-derived stem cells: fact or fiction? Biomed Res Int. 2013;2013:383685.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Li H, Xu Y, Xie H, Li C, Song L, Feng C, et al. Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng Part A. 2014;20:774–84.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wen F, Chang S, Toh YC, Teoh SH, Yu H. Development of poly (lactic-co-glycolic acid)-collagen scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2007;27:285–92.CrossRefGoogle Scholar
  29. 29.
    Margolis G, Polyak B, Cohen S. Magnetic induction of multiscale anisotropy in macroporous alginate scaffolds. Nano Lett. 2018;18:7314–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Fu WJ, Wang ZX, Li G, Zhang BH, Zhang L, Hu K, et al. A surface-modified biodegradable urethral scaffold seeded with urethral epithelial cells. Chin Med J (Engl). 2011;124:3087–92.PubMedGoogle Scholar
  31. 31.
    Stachewicz U, Szewczyk PK, Kruk A, Barber AH, Czyrska-Filemonowicz A. Pore shape dependence on cells growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater Sci Eng C Mater Biol Appl. 2017;95:397–408.CrossRefPubMedGoogle Scholar
  32. 32.
    Figallo E, Flaibani M, Zavan B, Abatangelo G, Elvassore N. Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnol Prog. 2007;23:210–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Selim M, Bullock AJ, Blackwood KA, Chapple CR, MacNeil S. Developing biodegradable scaffolds for tissue engineering of the urethra. BJU Int. 2011;107:296–302.CrossRefPubMedGoogle Scholar
  34. 34.
    Lv XG, Feng C, Fu Q, Xie H, Wang Y, Huang JW, et al. Comparative study of different seeding methods based on a multilayer SIS scaffold: which is the optimal procedure for urethral tissue engineering? J Biomed Mater Res Part B Appl Biomater. 2016;104:1098–108.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang F, Liu T, Yang L, Zhang G, Liu H, Yi X, et al. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med Sci Monit. 2014;20:2430–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Simões IN, Vale P, Soker S, Atala A, Keller D, Noiva R, et al. Acellular urethra bioscaffold: decellularization of whole urethras for tissue engineering applications. Sci Rep. 2017;7:41934.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Feng C, Xu YM, Fu Q, Zhu WD, Cui L. Reconstruction of three dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng Part A. 2011;17:3011–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Pinnagoda K, Larsson HM, Vythilingam G, Vardar E, Engelhardt EM, Thambidorai RC, et al. Acta Biomaterialia engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. Acta Biomater. 2016;43:208–17.CrossRefPubMedGoogle Scholar
  39. 39.
    Yan H, Zhong L, Jiang Y, Yang J, Deng J, Wei S, et al. Controlled release of insulin-like growth factor 1 enhances urethral sphincter function and histological structure in the treatment of female stress urinary incontinence in a rat model. BJU Int. 2018;121:301–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Raddatz L, Lavrentieva A, Pepelanova I, Bahnemann J, Geier D, Becker T, et al. Development and application of an additively manufactured calcium chloride nebulizer for alginate 3D-bioprinting purposes. J Funct Biomater. 2018;9:E63.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang DJ, Li MY, Huang WT, Lu MH, Hu C, Li K, et al. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. Connect Tissue Res. 2015;56:434–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Naji M, Rasouli J, Shakhssalim N, Dehghan MM, Soleimani M. Supportive features of a new hybrid scaffold for urothelium engineering. Arch Med Sci. 2015;11:438–45.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang K, Guo X, Zhao W, Niu G, Mo X, Fu Q. Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study. Int J Mol Sci. 2015;16:27659–76.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chun SY, Kim BS, Kwon SY, Park SI, Song PH, Yoo ES, et al. Urethroplasty using autologous urethral tissue-embedded acellular porcine bladder submucosa matrix grafts for the management of long-segment urethral stricture in a rabbit model. J Korean Med Sci. 2015;30:301–7.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sayeg K, Freitas-Filho LG, Waitzberg ÂF, Arias VE, Laks M, Egydio FM, et al. Integration of collagen matrices into the urethra when implanted as onlay graft. Int Braz J Urol. 2013;39:414–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Davis NF, Callanan A, McGuire BB, Flood HD, McGloughlin TM. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices. Urology. 2011;77:1007.e1–7.Google Scholar
  47. 47.
    Liu Y, Ma W, Liu B, Wang Y, Chu J, Xiong G, et al. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther. 2017;8:63.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Xie M, Song L, Wang J, Fan S, Zhang Y, Xu Y. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res. 2013;184:774–81.CrossRefPubMedGoogle Scholar
  49. 49.
    Algarrahi K, Affas S, Sack BS, Yang X, Costa K, Seager C, et al. Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty. J Surg Res. 2018;229:192–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tian B, Song L, Liang T, Li Z, Ye X, Fu Q, et al. Repair of urethral defects by an adipose mesenchymal stem cell—porous silk fibroin material. Mol Med Rep. 2018;18:209–15.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sartoneva R, Haimi S, Miettinen S, Mannerström B, Haaparanta AM, Sándor GK, et al. Comparison of a poly-l-lactide-co-ε-caprolactone and human amniotic membrane for urothelium tissue engineering applications. J R Soc Interface. 2011;8:671–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Kaye R, Goldstein T, Grande DA, Zeltsman D, Smith LP. A 3-dimensional bioprinted tracheal segment implant pilot study: rabbit tracheal restriction with graft implantation. Int J Pediatr Otorhinolaryngol. 2019;117:175–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: a technological marvel. J Clin Orthop Trauma. 2018;9:260–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Biomaterials Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34:130–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Drzewiecki KE, Malavade JN, Ahmed I, Lowe CJ, Shreiber DI. A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology (Singap World Sci). 2017;5:185–95.Google Scholar
  56. 56.
    Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. 2016;17:E1976.CrossRefPubMedGoogle Scholar
  57. 57.
    Bell A, Kofron M, Nistor V. Multiphoton crosslinking for biocompatible 3D printing of type I collagen. Biofabrication. 2015;7:035007.CrossRefPubMedGoogle Scholar
  58. 58.
    Pati F, Jang J, Lee JW, Cho DW. Extrusion bioprinting. In: Atala A, Yoo J, editors. Essential of 3D biofabrication and translation. San Diego: Academic press Elisevier; 2015. p. 123–52.Google Scholar
  59. 59.
    Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154–64.CrossRefPubMedGoogle Scholar
  60. 60.
    Morissette A, Imbeault A, Cattan V, Bernard G, Taillon G, Chabaud S, et al. Strategies to reconstruct a functional urethral substitute by self-assembly method. Procedia Eng. 2013;59:193–200.CrossRefGoogle Scholar
  61. 61.
    Magnan M, Lévesque P, Gauvin R, Dubé J, Barrieras D, El-Hakim A, et al. Tissue engineering of a genitourinary tubular tissue graft resistant to suturing and high internal pressures. Tissue Eng Part A. 2009;15:197–202.CrossRefPubMedGoogle Scholar
  62. 62.
    Vallières K, Laterreur V, Tondreau MY, Ruel J, Germain L, Fradette J, et al. Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes. Acta Biomater. 2015;24:209–19.CrossRefPubMedGoogle Scholar
  63. 63.
    Bouhout S, Gauvin R, Gibot L, Aubé D, Bolduc S. Bladder substitute reconstructed in a physiological pressure environment. J Pediatr Urol. 2011;7:276–82.CrossRefPubMedGoogle Scholar
  64. 64.
    Rousseau A, Fradette J, Bernard G, Gauvin R, Laterreur V, Bolduc S. Adipose-derived stromal cells for the reconstruction of a human vesical equivalent. J Tissue Eng Regen Med. 2013;9:E135–43.CrossRefPubMedGoogle Scholar
  65. 65.
    Seifarth V, Grosse JO, Gossmann M, Janke HP, Arndt P, Koch S, et al. Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation. J Biomater Appl. 2017;32:321–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Cattan V, Bernard G, Rousseau A, Bouhout S, Chabaud S, Auger FA, et al. Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft. Eur Urol. 2011;60:1291–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Vardar E, Engelhardt EM, Larsson HM, Mouloungui E, Pinnagoda K, Hubbell JA, et al. Tubular compressed collagen scaffolds for ureteral tissue engineering in a flow bioreactor system. Tissue Eng Part A. 2015;21:2334–45.CrossRefPubMedGoogle Scholar
  68. 68.
    Imbeault A, Bernard G, Rousseau A, Morissette A, Chabaud S, Bouhout S, et al. An endothelialized urothelial cell-seeded tubular graft for urethral replacement. Can Urol Assoc J. 2013;7:E4–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zhou S, Yang R, Zou Q, Zhang K, Yin T, Zhao W, et al. Fabrication of tissue-engineered bionic urethra using cell sheet technology and labeling by ultrasmall superparamagnetic iron oxide for full-thickness urethral reconstruction. Theranostics. 2017;7:2509–23.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sun D, Yang Y, Wei Z, Xu Y, Zhang X, Hong B. Engineering of pre-vascularized urethral patch with muscle flaps and hypoxia-activated hUCMSCs improves its therapeutic outcome. J Cell Mol Med. 2014;18:434–43.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Liu J, Hao H, Huang H, Tong C, Ti D, Dong L, et al. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extrem Wounds. 2015;14:63–72.CrossRefPubMedGoogle Scholar
  72. 72.
    Li C, Xu YM, Liu ZS, Li HB. Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits. Urology. 2013;81:1075–80.CrossRefPubMedGoogle Scholar
  73. 73.
    Chen KL, Wu HC, Chang CH. Tissue-engineered constructs for urethral regeneration. Urol Sci. 2012;23:42–4.CrossRefGoogle Scholar
  74. 74.
    El-Tabey N, Shokeir A, Barakat N, El-Refaie H, El-Hamid MA, Gabr M. Cell-seeded tubular acellular matrix for replacing a long circumferential urethral defect in a canine model: is it clinically applicable? Arab J Urol. 2012;10:192–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Fu Q, Deng CL, Song XF, Xu YM. Long-term study of male rabbit urethral mucosa reconstruction using epidermal cell. Asian J Androl. 2008;10:719–22.CrossRefPubMedGoogle Scholar
  76. 76.
    Osman NI, Patterson JM, MacNeil S, Chapple CR. Long-term follow-up after tissue-engineered buccal mucosa urethroplasty. Eur Urol. 2014;66:790–1.CrossRefPubMedGoogle Scholar
  77. 77.
    da Silva EA, Sampaio FJ, Ortiz V, Cardoso LE. Regional differences in the extracellular matrix of the human spongy urethra as evidenced by the composition of glycosaminoglycans. J Urol. 2002;167:2183–7.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society 2019

Authors and Affiliations

  • Zahra Rashidbenam
    • 1
  • Mohd Hafidzul Jasman
    • 2
  • Pezhman Hafez
    • 3
  • Guan Hee Tan
    • 2
  • Eng Hong Goh
    • 2
  • Xeng Inn Fam
    • 2
  • Christopher Chee Kong Ho
    • 4
  • Zulkifli Md Zainuddin
    • 2
  • Reynu Rajan
    • 5
  • Fatimah Mohd Nor
    • 6
  • Mohamad Aznan Shuhaili
    • 5
  • Nik Ritza Kosai
    • 5
  • Farrah Hani Imran
    • 6
  • Min Hwei Ng
    • 1
    Email author
  1. 1.Tissue Engineering CentreUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  2. 2.Urology Unit, Department of SurgeryUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  3. 3.Faculty of Medicine and Health ScienceUCSI UniversityKuala LumpurMalaysia
  4. 4.School of MedicineTaylor’s UniversitySubang JayaMalaysia
  5. 5.Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of SurgeryUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  6. 6.Plastic and Reconstructive Surgery Unit, Department of SurgeryUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia

Personalised recommendations