Advertisement

Tissue Engineering and Regenerative Medicine

, Volume 16, Issue 2, pp 177–189 | Cite as

D-RADA16-RGD-Reinforced Nano-Hydroxyapatite/Polyamide 66 Ternary Biomaterial for Bone Formation

  • WeiKang Zhao
  • Bin He
  • Ao Zhou
  • Yuling Li
  • Xiaojun Chen
  • Qiming Yang
  • Beike Chen
  • Bo QiaoEmail author
  • Dianming JiangEmail author
Original Article

Abstract

BACKGROUND:

Nano-hydroxyapatite/polyamide 66 (nHA/PA66) is a composite used widely in the repair of bone defects. However, this material is insufficient bioactivity. In contrast, D-RADA16-RGD self-assembling peptide (D-RADA16-RGD sequence containing all D-amino acids is Ac-RADARADARADARADARGDS-CONH2) shows admirable bioactivity for both cell culture and bone regeneration. Here, we describe the fabrication of a favorable biomaterial material (nHA/PA66/D-RADA16-RGD).

METHODS:

Proteinase K and circular dichroism spectroscopy were employed to test the stability and secondary structural properties of peptide D-RADA16-RGD respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the surface of these materials. Confocal laser scanning (CLS), cell counting kit-8 tests (CCK-8), alizarin red S staining, cell immunofluorescence analysis and Western blotting were involved in vitro. Also biosafety and bioactivity of them have been evaluated in vivo.

RESULTS:

Proteinase K and circular dichroism spectroscopy demonstrated that D-RADA16-RGD in nHA/PA66 was able to form stable-sheet secondary structure. SEM and TEM showed that the D-RADA16-RGD material was 7–33 nm in width and 130–600 nm in length, and the interwoven pore size ranged from 40 to 200 nm. CLS suggests that cells in nHA/PA66/D-RADA16-RGD group were linked to adjacent cells with more actin filaments. CCK-8 analysis showed that nHA/PA66/D-RADA16-RGD revealed good biocompatibility. The results of Alizarin-red S staining and Western blotting as well as vivo osteogenesis suggest nHA/PA66/D-RADA16-RGD exhibits better bioactivity.

CONCLUSION:

This study demonstrates that our nHA/PA66/D-RADA16-RGD composite exhibits reasonable mechanical properties, biocompatibility and bioactivity with promotion of bone formation.

Keywords

nHA/PA66/D-RADA16-RGD Bone defect Bone regeneration Peptide hydrogel 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of Young Scientists of China (81501876) and the National Natural Science Foundation of China (81472057).

Compliance with ethical standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical statement

All experimental protocols were approved by the Ethics Committee of Chongqing Medical University (Reference Number: IACUC.NO:2016-059). The experimental scheme is demonstrated by the ethics committee of Chongqing Medical University.

Supplementary material

13770_2018_171_MOESM1_ESM.docx (116 kb)
Supplementary material 1 (DOCX 115 kb)

References

  1. 1.
    He B, Ou Y, Zhou A, Chen S, Zhao W, Zhao J, et al. Functionalized d-form self-assembling peptide hydrogels for bone regeneration. Drug Des Devel Ther. 2016;10:1379–88.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Long T, Zhu Z, Awad HA, Schwarz EM, Hilton MJ, Dong Y. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials. 2014;35:2752–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Qi M, Hu J, Li J, Li J, Dong W, Feng X, et al. Effect of zoledronate acid treatment on osseointegration and fixation of implants in autologous iliac bone grafts in ovariectomized rabbits. Bone. 2012;50:119–27.CrossRefPubMedGoogle Scholar
  4. 4.
    Russell TA, Insley G. Bone substitute materials and minimally invasive surgery: a convergence of fracture treatment for compromised bone. Orthop Clin North Am. 2017;48:289-300.CrossRefPubMedGoogle Scholar
  5. 5.
    Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abedi G, Jahanshahi A, Fathi MH, Haghdost IS, Veshkini A. Study of nano-hydroxyapatite/zirconia stabilized with yttria in bone healing: histopathological study in rabbit model. Pol J Pathol. 2014;65:40–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang X, Zhang Y, Zhang X, Wang Y, Wang J, Lu M, et al. Mechanical properties and cytocompatibility of carbon fibre reinforced nano-hydroxyapatite/polyamide66 ternary biocomposite. J Mech Behav Biomed Mater. 2015;42:267–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Qiao B, Li J, Zhu Q, Guo S, Qi X, Li W, et al. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility. Int J Nanomedicine. 2014;9:1423–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Su B, Peng X, Jiang D, Wu J, Qiao B, Li W, et al. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) as a novel bioactive bone screw. PLoS One. 2013;8:e68342.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang P, Bian C, Huang X, Shi A, Wang C, Wang K. Core decompression in combination with nano-hydroxyapatite/polyamide 66 rod for the treatment of osteonecrosis of the femoral head. Arch Orthop Trauma Surg. 2014;134:103–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang X, Song Y, Liu L, Liu H, Zeng J, Pei F. Anterior reconstruction with nano-hydroxyapatite/polyamide-66 cage after thoracic and lumbar corpectomy. Orthopedics. 2012;35:e66–73.PubMedGoogle Scholar
  13. 13.
    Zhang Y, Deng X, Jiang D, Luo X, Tang K, Zhao Z, et al. Long-term results of anterior cervical corpectomy and fusion with nano-hydroxyapatite/polyamide 66 strut for cervical spondylotic myelopathy. Sci Rep. 2016;6:26751.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li J, Man Y, Zuo Y, Zhang L, Huang C, Liu M, et al. In vitro and in vivo evaluation of a nHA/PA66 composite membrane for guided bone regeneration. J Biomater Sci Polym Ed. 2011;22:263–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Xiong Y, Ren C, Zhang B, Yang H, Lang Y, Min L, et al. Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int J Nanomedicine. 2014;9:485–94.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    He B, Yuan X, Zhang H, Jiang D. Research progress of self-assembling peptide nanofiber scaffold for bone repair. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28:1303–6.PubMedGoogle Scholar
  17. 17.
    Bull SR, Guler MO, Bras RE, Venkatasubramanian PN, Stupp SI, Meade TJ. Magnetic resonance imaging of self-assembled biomaterial scaffolds. Bioconjug Chem. 2005;16:1343–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Bull SR, Guler MO, Bras RE, Meade TJ, Stupp SI. Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Lett. 2005;5:1–4.CrossRefPubMedGoogle Scholar
  19. 19.
    He B, Yuan X, Zhou A, Zhang H, Jiang D. Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering. Expert Rev Mol Med. 2014;16:e12.CrossRefPubMedGoogle Scholar
  20. 20.
    Luo Z, Wang S, Zhang S. Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis. Biomaterials. 2011;32:2013–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Graf J, Ogle RC, Robey FA, Sasaki M, Martin GR, Yamada Y, et al. A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67,000 laminin receptor. Biochemistry. 1987;26:6896–900.CrossRefPubMedGoogle Scholar
  22. 22.
    Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001;22:1095–111.CrossRefPubMedGoogle Scholar
  23. 23.
    Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, et al. Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater. 2008;24:357–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Barber FA, Dockery WD, Hrnack SA. Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw. Arthroscopy. 2011;27:637–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A. 1993;90:3334–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Luo Z, Zhao X, Zhang S. Structural dynamic of a self-assembling peptide d-EAK16 made of only d-amino acids. PLoS One. 2008;3:e2364.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials. 2002;23:937–45.CrossRefPubMedGoogle Scholar
  28. 28.
    Elpers M, Nam D, Boydston-White S, Ast MP, Wright TM, Padgett DE. Zirconia phase transformation, metal transfer, and surface roughness in retrieved ceramic composite femoral heads in total hip arthroplasty. J Arthroplasty. 2014;29:2219–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Kohal RJ, Wolkewitz M, Mueller C. Alumina-reinforced zirconia implants: survival rate and fracture strength in a masticatory simulation trial. Clin Oral Implants Res. 2010;21:1345–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986;44:517–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Potter W, Kalil RE, Kao WJ. Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci. 2008;13:806–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Gelain F, Unsworth LD, Zhang S. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J Control Release. 2010;145:231–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A. 2002;99:9996–10001.CrossRefPubMedGoogle Scholar
  34. 34.
    Györgyey Á, Ungvári K, Kecskeméti G, Kopniczky J, Hopp B, Oszkó A, et al. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater Sci Eng C Mater Biol Appl. 2013;33:4251–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Tan H, Guo S, Yang S, Xu X, Tang T. Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement. Acta Biomater. 2012;8:2166–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Ma R, Tang S, Tan H, Lin W, Wang Y, Wei J, et al. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomedicine. 2014;9:3949–61.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107:4872–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Meyer U, Buchter A, Wiesmann HP, Joos U, Jones DB. Basic reactions of osteoblasts on structured material surfaces. Eur Cell Mater. 2005;9:39–49.CrossRefPubMedGoogle Scholar
  39. 39.
    Höke A. Neuroprotection in the peripheral nervous system: rationale for more effective therapies. Arch Neurol. 2006;63:1681–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49:377–91.CrossRefPubMedGoogle Scholar
  41. 41.
    Webber MJ, Matson JB, Tamboli VK, Stupp SI. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials. 2012;33:6823–32.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6:13–22.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhou A, Chen S, He B, Zhao W, Chen X, Jiang D. Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds. Drug Des Devel Ther. 2016;10:3043–51.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    D’Auria G, Vacatello M, Falcigno L, Paduano L, Mangiapia G, Calvanese L, et al. Self-assembling properties of ionic-complementary peptides. J Pept Sci. 2009;15:210–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Anderson JM, Patterson JL, Vines JB, Javed A, Gilbert SR, Jun HW. Biphasic peptide amphiphile nanomatrix embedded with hydroxyapatite nanoparticles for stimulated osteoinductive response. ACS Nano. 2011;5:9463–79.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Satija NK, Gurudutta GU, Sharma S, Afrin F, Gupta P, Verma YK, et al. Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev. 2007;16:7–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Song JH, Kim JH, Park S, Kang W, Kim HW, Kim HE, et al. Signaling responses of osteoblast cells to hydroxyapatite: the activation of ERK and SOX9. J Bone Miner Metab. 2008;26:138–42.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.The First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.The Third Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.Affiliated Hospital of Northern, Sichuan Medical UniversityNanchong CityPeople’s Republic of China

Personalised recommendations