Skip to main content

Advertisement

Log in

Human adipose-derived stromal cells as a feeder layer to improve keratinocyte expansion for clinical applications

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The aim of this work is to propose a keratinocytes (KC) culture method for clinical practice with irradiated adipose-derived mesenchymal stromal cells (ASCs) as human feeder layer, avoiding murine immortalized fibroblasts, commonly request for producing skin substitutes. ASCs were isolated, expanded, irradiated, and co-cultured with autologous or allogeneic KC. All experiments were performed using murine fibroblasts as control. Cell counts, flow cytometric analysis and ELISA were carried out, in order to define cell yield, viability and cytokine secretion. Results indicate that the optimal X-ray dose for ASCs is 120 Gy and the optimal seeding density is 625 cells/cm2; moreover, flow cytometric analysis shows that the percentage of feeder layer cells reaches values lower than 1%, within 8 days of co-culture. KC reach confluence in 6.9 days on ASCs substrate and, after confluence, the number of live cells increases again in a multilayered structure. Moreover, results show higher levels of interleukin (IL)-1a in co-culture with ASCs compared with 3T3, while no differences were observed for IL-6 and IL-8. Therefore, human ASCs enable to obtain effectively in vitro expanded KC and represent a viable alternative to murine fibroblasts for the production of clinical use skin substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975;6:331–343.

    Article  CAS  PubMed  Google Scholar 

  2. Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 1963;17:299–313.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Witte L, Fuks Z, Haimovitz-Friedman A, Vlodavsky I, Goodman DS, Eldor A. Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cells. Cancer Res 1989;49:5066–5072.

    CAS  PubMed  Google Scholar 

  4. Brach MA, Gruss HJ, Kaisho T, Asano Y, Hirano T, Herrmann F. Ionizing radiation induces expression of interleukin 6 by human fibroblasts involving activation of nuclear factor-kappa B. J Biol Chem 1993;268:8466–8472.

    CAS  PubMed  Google Scholar 

  5. Maas-Szabowski N, Fusenig NE. Interleukin-1-induced growth factor expression in postmitotic and resting fibroblasts. J Invest Dermatol 1996;107:849–855.

    Article  CAS  PubMed  Google Scholar 

  6. Maas-Szabowski N, Stark HJ, Fusenig NE. Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts. J Invest Dermatol 2000;114:1075–1084.

    Article  CAS  PubMed  Google Scholar 

  7. Waelti ER, Inaebnit SP, Rast HP, Hunziker T, Limat A, Braathen LR, et al. Co-culture of human keratinocytes on post-mitotic human dermal fibroblast feeder cells: production of large amounts of interleukin 6. J Invest Dermatol 1992;98:805–808.

    Article  CAS  PubMed  Google Scholar 

  8. Boxman I, Löwik C, Aarden L, Ponec M. Modulation of IL-6 production and IL-1 activity by keratinocyte-fibroblast interaction. J Invest Dermatol 1993;101:316–324.

    Article  CAS  PubMed  Google Scholar 

  9. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A 1989;86:802–806.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rubin JS, Bottaro DP, Chedid M, Miki T, Ron D, Cheon G, et al. Keratinocyte growth factor. Cell Biol Int 1995;19:399–411.

    Article  CAS  PubMed  Google Scholar 

  11. Smola H, Thiekötter G, Fusenig NE. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J Cell Biol 1993;122:417–429.

    Article  CAS  PubMed  Google Scholar 

  12. Sato C, Tsuboi R, Shi CM, Rubin JS, Ogawa H. Comparative study of hepatocyte growth factor/scatter factor and keratinocyte growth factor effects on human keratinocytes. J Invest Dermatol 1995;104:958–963.

    Article  CAS  PubMed  Google Scholar 

  13. Igarashi M, Finch PW, Aaronson SA. Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J Biol Chem 1998;273:13230–13235.

    Article  CAS  PubMed  Google Scholar 

  14. Blomme EA, Sugimoto Y, Lin YC, Capen CC, Rosol TJ. Parathyroid hormone-related protein is a positive regulator of keratinocyte growth factor expression by normal dermal fibroblasts. Mol Cell Endocrinol 1999;152:189–197.

    Article  CAS  PubMed  Google Scholar 

  15. Breuhahn K, Mann A, Müller G, Wilhelmi A, Schirmacher P, Enk A, et al. Epidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis. Cell Growth Differ 2000;11:111–121.

    CAS  PubMed  Google Scholar 

  16. Mann A, Breuhahn K, Schirmacher P, Blessing M. Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J Invest Dermatol 2001;117:1382–1390.

    Article  CAS  PubMed  Google Scholar 

  17. Marchese C, Felici A, Visco V, Lucania G, Igarashi M, Picardo M, et al. Fibroblast growth factor 10 induces proliferation and differentiation of human primary cultured keratinocytes. J Invest Dermatol 2001;116:623–628.

    Article  CAS  PubMed  Google Scholar 

  18. Werner S, Smola H. Paracrine regulation of keratinocyte proliferation and differentiation. Trends Cell Biol 2001;11:143–146.

    Article  CAS  PubMed  Google Scholar 

  19. El Ghalbzouri A, Ponec M. Diffusible factors released by fibroblasts support epidermal morphogenesis and deposition of basement membrane components. Wound Repair Regen 2004;12:359–367.

    Article  PubMed  Google Scholar 

  20. Marinkovich MP, Keene DR, Rimberg CS, Burgeson RE. Cellular origin of the dermal-epidermal basement membrane. Dev Dyn 1993;197:255–267.

    Article  CAS  PubMed  Google Scholar 

  21. Eckes B, Zweers MC, Zhang ZG, Hallinger R, Mauch C, Aumailley M, et al. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J Investig Dermatol Symp Proc 2006;11:66–72.

    Article  CAS  PubMed  Google Scholar 

  22. Smola H, Stark HJ, Thiekötter G, Mirancea N, Krieg T, Fusenig NE. Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp Cell Res 1998;239:399–410.

    Article  CAS  PubMed  Google Scholar 

  23. Sato T, Kirimura Y, Mori Y. The co-culture of dermal fibroblasts with human epidermal keratinocytes induces increased prostaglandin E2 production and cyclooxygenase 2 activity in fibroblasts. J Invest Dermatol 1997;109:334–339.

    Article  CAS  PubMed  Google Scholar 

  24. Sawicki G, Marcoux Y, Sarkhosh K, Tredget EE, Ghahary A. Interaction of keratinocytes and fibroblasts modulates the expression of matrix metalloproteinases-2 and -9 and their inhibitors. Mol Cell Biochem 2005;269:209–216.

    Article  CAS  PubMed  Google Scholar 

  25. Rheinwald JG. The role of terminal differentiation in the finite culture lifetime of the human epidermal keratinocyte. Int Rev Cytol Suppl 1979;(10):25–33.

    Article  PubMed  Google Scholar 

  26. Rheinwald JG. Serial cultivation of normal human epidermal keratinocytes. Methods Cell Biol 1980;21A:229–254.

    Article  CAS  PubMed  Google Scholar 

  27. Stacey GN, Cobo F, Nieto A, Talavera P, Healy L, Concha A. The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: challenges and solutions. J Biotechnol 2006;125:583–588.

    Article  CAS  PubMed  Google Scholar 

  28. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005;11:228–232.

    Article  CAS  PubMed  Google Scholar 

  29. Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, et al. N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 2007;25:197–202.

    Article  CAS  PubMed  Google Scholar 

  30. Varki NM, Varki A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 2007;87:851–857.

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi T, Wang L, Mori S, Nakagawa K, Yoshikura H, Kanda T. Characterization of mouse 3T3-swiss albino cells available in Japan: necessity of quality control when used as feeders. Jpn J Infect Dis 2008;61:9–12.

    CAS  PubMed  Google Scholar 

  32. International Conference on Harmonisation; guidance on quality of biotechnological/biological products: derivation and characterization of cell substrates used for production of biotechnological/biological products; availability. Notice. Food and Drug Administration, HHS. Fed Regist 1998;63:50244–50249.

    Google Scholar 

  33. Coolen NA, Ulrich MMW, Middelkoop E. Future perspectives of tissueengineered skin: xenobiotic-free culture systems. In: Sen CK, editor. Advances in wound care. Vol. 1. Columbus, USA: Mary Ann Liebert, Inc.; 2010. p.432–437.

    Google Scholar 

  34. Deshpande P, Ralston DR, MacNeil S. The use of allodermis prepared from Euro skin bank to prepare autologous tissue engineered skin for clinical use. Burns 2013;39:1170–1177.

    Article  CAS  PubMed  Google Scholar 

  35. Lamb R, Ambler CA. Keratinocytes propagated in serum-free, feederfree culture conditions fail to form stratified epidermis in a reconstituted skin model. PLoS One 2013;8:e52494.

    Article  Google Scholar 

  36. Hernon CA, Harrison CA, Thornton DJ, MacNeil S. Enhancement of keratinocyte performance in the production of tissue-engineered skin using a low-calcium medium. Wound Repair Regen 2007;15:718–726.

    Article  PubMed  Google Scholar 

  37. Cheng L, Hammond H, Ye Z, Zhan X, Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 2003;21:131–142.

    Article  CAS  PubMed  Google Scholar 

  38. Shipley GD, Keeble WW, Hendrickson JE, Coffey RJ Jr, Pittelkow MR. Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor. J Cell Physiol 1989;138:511–518.

    Article  CAS  PubMed  Google Scholar 

  39. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 2003;21:546–556.

    Article  CAS  PubMed  Google Scholar 

  40. Sugihara H, Toda S, Yonemitsu N, Watanabe K. Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. Br J Dermatol 2001;144:244–253.

    Article  CAS  PubMed  Google Scholar 

  41. Sugiyama H, Maeda K, Yamato M, Hayashi R, Soma T, Hayashida Y, et al. Human adipose tissue-derived mesenchymal stem cells as a novel feeder layer for epithelial cells. J Tissue Eng Regen Med 2008;2:445–449.

    Article  CAS  PubMed  Google Scholar 

  42. Regulation (EC) No 1394/2007 of the European Parliament and of the Council on Advanced Therapy Medicinal Products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. Available from: URL: http://ec.europa.eu/health/files/advtherapies/2014_atmp/atmp_en.pdf.

  43. Faustini M, Bucco M, Chlapanidas T, Lucconi G, Marazzi M, Tosca MC, et al. Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues. Tissue Eng Part C Methods 2010;16:1515–1521.

    Article  PubMed  Google Scholar 

  44. Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 1977;265:421–424.

    Article  CAS  PubMed  Google Scholar 

  45. Pajardi G, Rapisarda V, Somalvico F, Scotti A, Russo GL, Ciancio F, et al. Skin substitutes based on allogenic fibroblasts or keratinocytes for chronic wounds not responding to conventional therapy: a retrospective observational study. Int Wound J 2014 Feb 12 [Epub]. http://dx.doi.org/10.1111/ iwj.12223.

    Google Scholar 

  46. Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 2007;127:998–1008.

    Article  CAS  PubMed  Google Scholar 

  47. Auxenfans C, Thépot A, Justin V, Hautefeuille A, Shahabeddin L, Damour O, et al. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status. Biomed Mater Eng 2009;19:365–372.

    PubMed  Google Scholar 

  48. Mujaj S, Manton K, Upton Z, Richards S. Serum-free primary human fibroblast and keratinocyte coculture. Tissue Eng Part A 2010;16:1407–1420.

    Article  CAS  PubMed  Google Scholar 

  49. Bisson F, Rochefort E, Lavoie A, Larouche D, Zaniolo K, Simard-Bisson C, et al. Irradiated human dermal fibroblasts are as efficient as mouse fibroblasts as a feeder layer to improve human epidermal cell culture lifespan. Int J Mol Sci 2013;14:4684–4704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sun T, Higham M, Layton C, Haycock J, Short R, MacNeil S. Developments in xenobiotic-free culture of human keratinocytes for clinical use. Wound Repair Regen 2004;12:626–634.

    Article  PubMed  Google Scholar 

  51. Panacchia L, Dellambra E, Bondanza S, Paterna P, Maurelli R, Paionni E, et al. Nonirradiated human fibroblasts and irradiated 3T3-J2 murine fibroblasts as a feeder layer for keratinocyte growth and differentiation in vitro on a fibrin substrate. Cells Tissues Organs 2010;191:21–35.

    Article  PubMed  Google Scholar 

  52. Higham MC, Dawson R, Szabo M, Short R, Haddow DB, MacNeil S. Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use. Tissue Eng 2003;9:919–930.

    Article  CAS  PubMed  Google Scholar 

  53. Bullock AJ, Higham MC, MacNeil S. Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Eng 2006;12:245–255.

    Article  CAS  PubMed  Google Scholar 

  54. Ng W, Ikeda S. Standardized, defined serum-free culture of a human skin equivalent on fibroblast-populated collagen scaffold. Acta Derm Venereol 2011;91:387–391.

    Article  CAS  PubMed  Google Scholar 

  55. Jubin K, Martin Y, Lawrence-Watt DJ, Sharpe JR. A fully autologous coculture system utilising non-irradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use. Cytotechnology 2011;63:655–662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant 2011;20:5–14.

    Article  PubMed  Google Scholar 

  57. de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, et al. Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 2013;19:2459–2473.

    PubMed  Google Scholar 

  58. Housman TS, Lawrence N, Mellen BG, George MN, Filippo JS, Cerveny KA, et al. The safety of liposuction: results of a national survey. Dermatol Surg 2002;28:971–978.

    PubMed  Google Scholar 

  59. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005;54:132–141.

    Article  CAS  PubMed  Google Scholar 

  60. Astori G, Vignati F, Bardelli S, Tubio M, Gola M, Albertini V, et al. “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 2007;5:55.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 2008;26:664–675.

    Article  CAS  PubMed  Google Scholar 

  62. Folgiero V, Migliano E, Tedesco M, Iacovelli S, Bon G, Torre ML, et al. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant 2010;19:1225–1235.

    Article  PubMed  Google Scholar 

  63. Chlapanidas T, Faragò S, Mingotto F, Crovato F, Tosca MC, Antonioli B, et al. Regenerated silk fibroin scaffold and infrapatellar adipose stromal vascular fraction as feeder-layer: a new product for cartilage advanced therapy. Tissue Eng Part A 2011;17:1725–1733.

    Article  CAS  PubMed  Google Scholar 

  64. Ray A, Tatter SB, Santhanam U, Helfgott DC, May LT, Sehgal PB. Regulation of expression of interleukin-6. Molecular and clinical studies. Ann N Y Acad Sci 1989;557:353–361; discussion 361–362.

    Article  CAS  PubMed  Google Scholar 

  65. Sachs L, Lotem J, Shabo Y. The molecular regulators of macrophage and granulocyte development. Role of MGI-2/IL-6. Ann N Y Acad Sci 1989;557:417–435, discussion 435–437.

    Article  CAS  PubMed  Google Scholar 

  66. Shan L, Redhu NS, Saleh A, Halayko AJ, Chakir J, Gounni AS. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways. J Immunol 2010;184:7134–7143.

    Article  CAS  PubMed  Google Scholar 

  67. Taniguchi K, Arima K, Masuoka M, Ohta S, Shiraishi H, Ontsuka K, et al. Periostin controls keratinocyte proliferation and differentiation by interacting with the paracrine IL-1a/IL-6 loop. J Invest Dermatol 2014;134:1295–1304.

    Article  CAS  PubMed  Google Scholar 

  68. Tomlinson A, Ferguson MW. Wound healing: a model of dermal wound repair. Methods Mol Biol 2003;225:249–260.

    PubMed  Google Scholar 

  69. Aoki S, Toda S, Ando T, Sugihara H. Bone marrow stromal cells, preadipocytes, and dermal fibroblasts promote epidermal regeneration in their distinctive fashions. Mol Biol Cell 2004;15:4647–4657.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. El Ghalbzouri A, Hensbergen P, Gibbs S, Kempenaar J, van der Schors R, Ponec M. Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Lab Invest 2004;84:102–112.

    Article  PubMed  Google Scholar 

  71. Lu W, Yu J, Zhang Y, Ji K, Zhou Y, Li Y, et al. Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin. Cells Tissues Organs 2012;195:197–206.

    Article  CAS  PubMed  Google Scholar 

  72. Moon KM, Park YH, Lee JS, Chae YB, Kim MM, Kim DS, et al. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int J Mol Sci 2012;13:1239–1257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Torre ML, Lucarelli E, Guidi S, Ferrari M, Alessandri G, De Girolamo L, et al. Ex vivo expanded mesenchymal stromal cell minimal quality requirements for clinical application. Stem Cells Dev 2015;24:677–685.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodora Chlapanidas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosca, M.C., Chlapanidas, T., Galuzzi, M. et al. Human adipose-derived stromal cells as a feeder layer to improve keratinocyte expansion for clinical applications. Tissue Eng Regen Med 12, 249–258 (2015). https://doi.org/10.1007/s13770-015-0007-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0007-5

Key Words

Navigation