Advertisement

Applied Biological Chemistry

, Volume 61, Issue 6, pp 697–701 | Cite as

Cell growth inhibitory effects of polyphenols with naphthalene skeleton against cisplatin-resistant ovarian cancer cells

  • Soon Young Shin
  • Youngshim Lee
  • Jihyun Park
  • Doseok Hwang
  • Geunhyeong Jo
  • Ji Hye Lee
  • Dongsoo Koh
  • Yoongho Lim
Note
  • 61 Downloads

Abstract

Cisplatin often shows the drug resistance which could limit the chemotherapeutic efficacy. Thus, it is necessary to develop anticancer agents against cisplatin-resistant cancer cells. To identify pharmacophores exhibiting the cell growth inhibitory effect against cisplatin-resistant A2780/Cis ovarian cancer cells, we prepared 35 synthetic polyphenols bearing naphthalene skeleton including naphthalenyl chalcones, naphthalenyl flavones, naphthalenyl flavanones, 4,5-dihydro-1H-pyrazol-3-yl)naphthalen-2-ols, naphthalen-1-yl-N-phenyl-4,5-dihydro-1H-pyrazole-1-carbothioamides, and 4,5-dihydro-1H-pyrazol-3-yl)naphthalen-1-ol. The correlation between their inhibitory effects and structural properties was evaluated using hologram quantitative structure activity relationship and comparative molecular field analysis. The pharmacophores derived here can lead us to design new polyphenols against the growth of cisplatin-resistant cells.

Keywords

Cisplatin-resistant ovarian cancer Clonogenicity Comparative molecular field analysis Hologram quantitative structure activity relationship Polyphenols 

Notes

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant No. NRF-2016R1D1A1A09919045), Republic of Korea. This paper was supported by the KU Research Professor Program of Konkuk University.

Supplementary material

13765_2018_403_MOESM1_ESM.doc (948 kb)
Supplementary material 1 (DOC 948 kb)

References

  1. 1.
    Sudo T (2012) Molecular-targeted therapies for ovarian cancer: prospects for the future. Int J Clin Oncol 17:424–429CrossRefGoogle Scholar
  2. 2.
    McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, Clarke-Pearson DL, Davidson M (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 334:1–6CrossRefGoogle Scholar
  3. 3.
    Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257CrossRefGoogle Scholar
  4. 4.
    Koberle B, Tomicic MT, Usanova S, Kaina B (2010) Cisplatin resistance: preclinical findings and clinical implications. Biochim Biophys Acta 1806:172–182PubMedGoogle Scholar
  5. 5.
    Usanova S, Piée-Staffa A, Sied U, Thomale J, Schneider A, Kaina B, Köberle B (2010) Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol Cancer 9:248CrossRefGoogle Scholar
  6. 6.
    Shin SY, Jung H, Ahn S, Hwang D, Yoon H, Hyun J, Yong Y, Cho HJ, Koh D, Lee YH, Lim Y (2014) Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells. Bioorg Med Chem 22:1809–1820CrossRefGoogle Scholar
  7. 7.
    Yoon H, Ahn S, Park M, Kim DW, Kim SH, Koh D, Lim Y (2013) 1H and 13C NMR spectral assignments of chalcones bearing pyrazoline-carbothioamide groups. Magn Reson Chem 51:500–508CrossRefGoogle Scholar
  8. 8.
    Hwang D, Hyun J, Jo G, Koh D, Lim Y (2011) Synthesis and complete assignment of NMR data of 20 chalcones. Magn Reson Chem 49:41–45CrossRefGoogle Scholar
  9. 9.
    Hwang D, Jo G, Hyun J, Lee SD, Koh D, Lim Y (2012) Synthesis of methoxybenzoflavones and assignments of their NMR data. Magn Reson Chem 50:62–67CrossRefGoogle Scholar
  10. 10.
    Shin SY, Yoon H, Ahn S, Kim DW, Bae DH, Koh D, Lee YH, Lim Y (2013) Structural properties of polyphenols causing cell cycle arrest at G1 phase in HCT116 human colorectal cancer cell lines. Int J Mol Sci 14:16970–16985CrossRefGoogle Scholar
  11. 11.
    Jung Y, Shin SY, Yong Y, Jung H, Ahn S, Lee YH, Lim Y (2015) Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships. Chem Biol Drug Des 85:574–585CrossRefGoogle Scholar
  12. 12.
    Jung KY, Park J, Han YS, Lee YH, Shin SY, Lim Y (2017) Synthesis and biological evaluation of hesperetin derivatives as agents inducing apoptosis. Bioorg Med Chem 25:397–407CrossRefGoogle Scholar
  13. 13.
    Lee Y, Kim BS, Ahn S, Koh D, Lee YH, Shin SY, Lim Y (2016) Anticancer and structure-activity relationship evaluation of 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide analogs of chalcone. Bioorg Chem 68:166–176CrossRefGoogle Scholar
  14. 14.
    Cho M, Yoon H, Park M, Kim YH, Lim Y (2014) Flavonoids promoting HaCaT migration: I. Hologram quantitative structure-activity relationships. Phytomedicine 21:560–569CrossRefGoogle Scholar
  15. 15.
    Kim BS, Shin SY, Ahn S, Koh D, Lee YH, Lim Y (2017) Biological evaluation of 2-pyrazolinyl-1-carbothioamide derivatives against HCT116 human colorectal cancer cell lines and elucidation on QSAR and molecular binding modes. Bioorg Med Chem 25:5423–5432CrossRefGoogle Scholar
  16. 16.
    Rao SD, Pagidas K (2010) Epigallocatechin-3-gallate, a natural polyphenol, inhibits cell proliferation and induces apoptosis in human ovarian cancer cells. Anticancer Res 30:2519–2523PubMedGoogle Scholar
  17. 17.
    Yang PY, Hu DN, Lin IC, Liu FS (2015) Butein shows cytotoxic effects and induces apoptosis in human ovarian cancer cells. Am J Chin Med 43:769–782CrossRefGoogle Scholar
  18. 18.
    Gao Y, Rankin GO, Tu Y, Chen YC (2016) Inhibitory effects of the four main theaflavin derivatives found in black tea on ovarian cancer cells. Anticancer Res 36(2):643–651PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tang JM, Min J, Li BS, Hong SS, Liu C, Hu M, Li Y, Yang J, Hong L (2016) Therapeutic effects of punicalagin against ovarian carcinoma cells in association with β-catenin signaling inhibition. Int J Gynecol Cancer 26:1557–1563CrossRefGoogle Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2018

Authors and Affiliations

  • Soon Young Shin
    • 1
  • Youngshim Lee
    • 2
  • Jihyun Park
    • 2
  • Doseok Hwang
    • 2
  • Geunhyeong Jo
    • 2
  • Ji Hye Lee
    • 3
  • Dongsoo Koh
    • 3
  • Yoongho Lim
    • 2
  1. 1.Department of Biological SciencesKonkuk UniversitySeoulRepublic of Korea
  2. 2.Division of Bioscience and Biotechnology, BMICKonkuk UniversitySeoulRepublic of Korea
  3. 3.Department of Applied ChemistryDongduk Women’s UniversitySeoulRepublic of Korea

Personalised recommendations