Maximum discrimination index: a tool for land cover identification

  • A. LencinaEmail author
  • C. Weber
Original Paper


This work presents an adaptable index that is applied to a pair of covers to be discriminated. Its adaptability relies on the procedure to determine the numerical value of the wavelengths or bands involved: the maximization of an operator based on the geometric mean of squared differences. This index is applied to the particular case of discrimination of wheat from ryegrass in different phenological stages. The maximum discrimination index outperforms other indices such as the normalized difference vegetation index, advanced normalized vegetation index and normalized difference greenness index. Its efficacy of discrimination is characterized and compared with the normalized difference greenness index (the second with better performance). It is observed that the proposed index has a more predictable behavior and reaches a discrimination accuracy as high as 95.5%. The maximum discrimination index could be adjusted to different covers and employed as a tool for discrimination. Spectral signatures coming from any platform: field, aerial or satellite, can be handled.


Discrimination Ryegrass Spectral signature Vegetation index Wheat 



Ch. W. thanks Universidad Nacional de La Plata and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires for academically supporting this work.

Compliance with ethical standards

Data availability

The data that support the findings of this study are openly available in figshare at: Navarrete et al. (2018).


  1. Ali A, Streibig JC, Andreasen C (2013) Yield loss prediction models based on early estimation of weed pressure. Crop Prot 53:125–131. CrossRefGoogle Scholar
  2. Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13:95–120. CrossRefGoogle Scholar
  3. Baratloo A, Hosseini M, Negida A, El Ashal G (2015) Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran) 3:48–49Google Scholar
  4. Buzzi MA, Rueter BL, Ghermandi L (2017) Múltiples índices espectrales para predecir la variabilidad de atributos estructurales y funcionales en zonas áridas. Ecología Austral 27:055–062Google Scholar
  5. Chamard P, Courel MF, Ducousso M, Guénégou MC, Le Rhun J, Levasseur JE, Loisel C, Togola M (1991) Utilisation des bandes spectrales du vert et du rouge pour une meilleure évaluation des formations végétales actives. In: Télédétection et Cartographie (ed) AUPELF-UREF, Quebec, pp 203–209Google Scholar
  6. Chang L, Peng-Sen S, Shi-Rong L (2016) A review of plant spectral reflectance response to water physiological changes. Chin J Plant Ecol 40:80–91. CrossRefGoogle Scholar
  7. Civco DL (1993) Artificial neural networks for land-cover classification and mapping. Int J Geogr Inf Syst 7:173–186. CrossRefGoogle Scholar
  8. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. CrossRefGoogle Scholar
  9. Fang H, Liang S, Kuusk A (2003) Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sens Environ 85:257–270. CrossRefGoogle Scholar
  10. Fletcher RS, Turley RB (2017) Employing canopy hyperspectral narrowband data and random forest algorithm to differentiate palmer amaranth from colored cotton. Am J Plant Sci 8:3258–3271. CrossRefGoogle Scholar
  11. Fraser RS, Kaufman YJ (1985) The relative importance of scattering and absorption in remote sensing. IEEE T Geosci Remote 23:625–633. CrossRefGoogle Scholar
  12. Fu-min W, Jing-feng H, Yan-lin T, Xiu-zhen W (2007) New vegetation index and its application in estimating leaf area index of rice. Rice Sci 14:195–203. CrossRefGoogle Scholar
  13. Gholizadeh A, Kopačková V (2019) Detecting vegetation stress as a soil contamination proxy: a review of optical proximal and remote sensing techniques. Int J Environ Sci Technol 16:2511–2524. CrossRefGoogle Scholar
  14. Gitelson AA, Kaufman YJ, Stark R, Don Rundquist (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80:76–87. CrossRefGoogle Scholar
  15. Gómez C, White JC, Wulder MA (2016) Optical remotely sensed time series data for land cover classification: a review. ISPRS J Photogram Remote Sens 116:55–72. CrossRefGoogle Scholar
  16. Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74. CrossRefGoogle Scholar
  17. Henrich V, Krauss G, Götze C, Sandow C (2012) IDB-Entwicklung einer Datenbank für Fernerkundungsindizes. AK Fernerkundung, Bochum. Accessed 27 June 2019
  18. Holben BN, Kaufman YJ, Kendall JD (1990) NOAA-11 AVHRR visible and near-IR inflight calibration. Int J Remote Sens 11:1511–1519. CrossRefGoogle Scholar
  19. Huete AR, Liu HQ (1994) An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Trans Geosci Remote 32:897–905. CrossRefGoogle Scholar
  20. Huete AR, Liu HQ, Batchily K, van Leeuwen W (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens Environ 59:440–451. CrossRefGoogle Scholar
  21. Huete AR, Didan K, Van Leeuwen W (1999) Modis vegetation index (MOD 13). Algorithm theoretical basis document. Vegetation Index and Phenology Lab, The University of Arizona. Accessed 1 July 2019
  22. Hunt ER Jr, Cavigelli M, Daughtry CST, Mcmurtrey JE III, Walthall CL (2005) Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis Agric 6:359–378. CrossRefGoogle Scholar
  23. Karakacan Kuzucu A, Bektas Balcik F (2017) Testing the potential of vegetation indices for land use/cover classification using high resolution data. ISPRS Ann Photogram Remote Sens Spatial Inf Sci. CrossRefGoogle Scholar
  24. Kaufman YJ (1984) Atmospheric effects on remote sensing of surface reflectance. SPIE Remote Sens 475:20–33. CrossRefGoogle Scholar
  25. Landsat 8, (2016) Landsat 8 (L8) Data users handbook, department of the Interior, US Geological Survey. Accessed 3 July 2019
  26. Landsat Indices (2019) Landsat surface reflectance-derived spectral indices. USGS Web. Accessed 1 July 2019
  27. Navarrete F, Lencina A, Acciaresi H, Weber C (2018) Use of hyperspectral data to identify and discriminate wheat from a glyphosate resistant ryegrass biotype. Figshare.
  28. Ouyang Z, Gao Y, Xie X, Guo H, Zhang T, Zhao B (2013) Spectral discrimination of the invasive plant spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PLoS One 8:e67315. CrossRefGoogle Scholar
  29. Peña-Barragán JM, López-Granados F, Jurado-Expósito M, García-Torres L (2006) Spectral discrimination of Ridolfia segetum and sunflower as affected by phenological stage. Weed Res 46:10–21. CrossRefGoogle Scholar
  30. Rouse JW, Haas RW, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation Type III Final Report, NASA, USA. Document ID: 19750020419. Accessed 20 Mar 2019
  31. Salas EAL, Boykin KG, Valdez R (2016) Multispectral and texture feature application in image-object analysis of summer vegetation in eastern Tajikistan Pamirs. Remote Sens 8:78. CrossRefGoogle Scholar
  32. San Martín C, Andújar D, Barroso J, Fernández-Quintanilla C, Dorado J (2016) Weed decision threshold as a key factor for herbicide reductions in site-specific weed management. Weed Technol 30:888–897. CrossRefGoogle Scholar
  33. Swanton CJ, Weaver S, Cowan P, Van Acker R, Deen W, Shreshta A (1999) Weed thresholds. J Crop Prod 2:9–29. CrossRefGoogle Scholar
  34. Wang N, Zeng NN, Zhu W (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. Northeast SAS user group proceedings, section of health care and life sciences, Baltimore, Maryland. Accessed 3 July 2019
  35. Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1:9–23. CrossRefGoogle Scholar
  36. Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens 2017:1353691. CrossRefGoogle Scholar
  37. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Laboratorio de Análisis de Suelos, Facultad de AgronomíaUniversidad Nacional del Centro de la Provincia de Buenos Aires, CONICETAzulArgentina
  2. 2.Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Centro de Investigaciones Ópticas (CONICET-CIC-UNLP)GonnetArgentina
  4. 4.Comisión de Investigaciones Científicas de la Provincia de Buenos AiresLa PlataArgentina

Personalised recommendations