Mechanistic removal of environmental contaminants using biogenic nano-materials

  • S. Kumari
  • M. Tyagi
  • S. JagadevanEmail author


Materials of nano-dimensions are gaining popularity due to their inherent properties such as high reactivity, mobility and surface area. Environmental bioremediation by employing microbial platforms is one of the most rapidly growing areas of nano-biotechnology. Nanoparticles synthesized using biological entities such as yeast, bacteria, fungi, algae and plants are referred to as biogenic nanoparticles. Owing to their nontoxicity, biologically synthesized nanoparticles have emerged as a sustainable alternative to chemically synthesized nanoparticles. In the past few years, several biogenic nanoparticles have been developed for potential application in medicine and environmental remediation. Biogenic nanoparticles such as biogenic manganese oxide (BioMnOx), biogenic nano-magnets, bio-palladium nanocrystals and biogenic iron species have proven to be effective for the removal of several micro-pollutants, heavy metals, recalcitrant pollutants and halogenated compounds. Nano-bioremediation could emerge as a better, safer, ecofriendly and cost-effective technology, which can greatly influence the domain of environmental remediation in the long run. This study reviews the synthesis, classification and applications of microbial nanoparticles for environmental bioremediation.


Biogenic metals Nano-biotechnology Nanoparticles Nano-toxicity 



Funding was provided by Indian Institute of Technology (Indian School of Mines), Dhanbad (Grant No. S/86/2014-2015/ESE).


  1. Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4(5):571–576CrossRefGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19(8):3550–3553CrossRefGoogle Scholar
  3. Anghel L, Balasoiu M, Ishchenko LA, Stolyar SV, Kurkin TS, Rogachev AV, Kuklin AI, Kovalev YS, Raikher YL, Iskhakov RS, Duca G (2012) Characterization of bio-synthesized nanoparticles produced by Klebsiella oxytoca. J Phys 351(1):012005Google Scholar
  4. Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5(5):603–607CrossRefGoogle Scholar
  5. Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612CrossRefGoogle Scholar
  6. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials 6(12):5942–5950CrossRefGoogle Scholar
  7. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277CrossRefGoogle Scholar
  8. Bai Y, Yang T, Liang J, Qu J (2016) The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res 98:119–127CrossRefGoogle Scholar
  9. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68(1):88–92CrossRefGoogle Scholar
  10. Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9(1):56CrossRefGoogle Scholar
  11. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170CrossRefGoogle Scholar
  12. Brayner R, Coradin T, Beaunier P, Grenèche JM, Djediat C, Yéprémian C, Fiévet F (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloids Surf B Biointerfaces 93:20–23CrossRefGoogle Scholar
  13. Busto Y, Cabrera X, Tack FMG, Verloo MG (2011) Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry. J Hazard Mater 186(1):114–118CrossRefGoogle Scholar
  14. Castro L, Blázquez ML, González F, Muñoz JA, Ballester A (2018) Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 179:44–51CrossRefGoogle Scholar
  15. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48CrossRefGoogle Scholar
  16. Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomed 6:2305Google Scholar
  17. Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J Nanomater 16(1):57Google Scholar
  18. Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2016) Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res 18(3):79CrossRefGoogle Scholar
  19. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199CrossRefGoogle Scholar
  20. Davis AS, Prakash P, Thamaraiselvi K (2017) Nanobioremediation technologies for sustainable environment. In: Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T (eds) Bioremediation and sustainable technologies for cleaner environment. Springer, Cham, pp 13–33CrossRefGoogle Scholar
  21. Davolos D, Pietrangeli B (2013) A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy). Ecotoxicol Environ Saf 96:1–9CrossRefGoogle Scholar
  22. De Corte S, Sabbe T, Hennebel T, Vanhaecke L, De Gusseme B, Verstraete W, Boon N (2012) Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions. Water Res 46(8):2718–2726CrossRefGoogle Scholar
  23. Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1–31CrossRefGoogle Scholar
  24. Devi JS, Bhimba BV, Peter DM (2013) Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Indian J Geo-Mar Sci 42(1):125–130Google Scholar
  25. Dhillon GS, Kaur S, Verma M, Brar SK (2012) Biopolymer-based nanomaterials: potential applications in bioremediation of contaminated wastewaters and soils. Compr Anal Chem 59:91–129CrossRefGoogle Scholar
  26. Feynman R (1959) There’s plenty of Room at the Bottom. California Institute of Technology. Caltech Eng Sci 23:22–36Google Scholar
  27. Forrez I, Carballa M, Fink G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N, Verstraete W (2011) Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Res 45(4):1763–1773CrossRefGoogle Scholar
  28. Furgal KM, Meyer RL, Bester K (2014) Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 136:321–326CrossRefGoogle Scholar
  29. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247CrossRefGoogle Scholar
  30. Ghodake G, Lee DS (2011) Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron 6(3):268–271CrossRefGoogle Scholar
  31. Gopal JV, Thenmozhi M, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA (2013) Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett 93:360–362CrossRefGoogle Scholar
  32. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74(1):328–335CrossRefGoogle Scholar
  33. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987CrossRefGoogle Scholar
  34. Hennebel T, De Gusseme B, Boon N, Verstraete W (2009a) Biogenic metals in advanced water treatment. Trends Biotechnol 27(2):90–98CrossRefGoogle Scholar
  35. Hennebel T, Verhagen P, Simoen H, Gusseme B De, Vlaeminck SE, Boon N, Verstraete W (2009b) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76(9):1221–1225CrossRefGoogle Scholar
  36. Hosseinkhani B, Nuzzo A, Zanaroli G, Fava F, Boon N (2015) Assessment of catalytic dechlorination activity of suspended and immobilized bio-Pd NPs in different marine conditions. Appl Catal B 168:62–67CrossRefGoogle Scholar
  37. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006CrossRefGoogle Scholar
  38. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079CrossRefGoogle Scholar
  39. Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas TP, Reuel N, Parry N, Wogan GN, Strano MS (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8(11):873CrossRefGoogle Scholar
  40. Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48(11):1152–1156Google Scholar
  41. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641CrossRefGoogle Scholar
  42. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84CrossRefGoogle Scholar
  43. Jencarova J, Luptakova A (2012) The elimination of heavy metal ions from waters by biogenic iron sulphides. Chem Eng Trans 28:205–210Google Scholar
  44. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, Barathmanikanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77(2):257–262CrossRefGoogle Scholar
  45. Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5(4):499–504CrossRefGoogle Scholar
  46. Khandel P, Shahi SK (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct 6(1):1–24Google Scholar
  47. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614CrossRefGoogle Scholar
  48. Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanopart Res 14(5):860CrossRefGoogle Scholar
  49. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—Part I. Chemosphere 75(4):417–434CrossRefGoogle Scholar
  50. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 82:489–494Google Scholar
  51. Lirdprapamongkol K, Warisnoicharoen W, Soisuwan S, Svasti J (2010) Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am J Appl Sci 7(8):1038CrossRefGoogle Scholar
  52. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964CrossRefGoogle Scholar
  53. Mala JGS, Rose C (2014) Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol 170:73–78CrossRefGoogle Scholar
  54. Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 3(1):30CrossRefGoogle Scholar
  55. Martins M, Mourato C, Sanches S, Noronha JP, Crespo MTB, Pereira IAC (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168CrossRefGoogle Scholar
  56. Mashrai A, Khanam H, Aljawfi RN (2017) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem 10:S1530–S1536CrossRefGoogle Scholar
  57. Mazumdar H, Haloi N (2017) A study on Biosynthesis of Iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49Google Scholar
  58. Menon S, Rajeshkumar S, Kumar V (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Effic Technol 3(4):516–527CrossRefGoogle Scholar
  59. Mirzadeh S, Darezereshki E, Bakhtiari F, Fazaelipoor MH, Hosseini MR (2013) Characterization of zinc sulfide (ZnS) nanoparticles biosynthesized by Fusarium oxysporum. Mater Sci Semicond Process 16(2):374–378CrossRefGoogle Scholar
  60. Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. J Miner Met Mater Soc 62(11):45–48CrossRefGoogle Scholar
  61. Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Yun SI (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells. Appl Microbiol Biotechnol 92(3):617–630CrossRefGoogle Scholar
  62. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  63. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3(5):461–463CrossRefGoogle Scholar
  64. Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85(1–2):145–163CrossRefGoogle Scholar
  65. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Biores Technol 101(22):8772–8776CrossRefGoogle Scholar
  66. Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41(8):5723–5730CrossRefGoogle Scholar
  67. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5(4):452–456CrossRefGoogle Scholar
  68. Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189(1–2):519–525CrossRefGoogle Scholar
  69. Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 116:485–490CrossRefGoogle Scholar
  70. Permina EA, Kazakov AE, Kalinina OV, Gelfand MS (2006) Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 6(49):1–11Google Scholar
  71. Phanjom P, Ahmed G (2015) Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. Nanosci Nanotechnol 5(1):14–21Google Scholar
  72. Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22(5):614–621CrossRefGoogle Scholar
  73. Prasad TN, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25(1):177–182CrossRefGoogle Scholar
  74. Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, New York, pp 1–14CrossRefGoogle Scholar
  75. Rajamanickam U, Mylsamy P, Viswanathan S, Muthusamy P (2012) Biosynthesis of zinc nanoparticles using actinomycetes for antibacterial food packaging. In: International conference on nutrition and food sciences Singapore, vol 39Google Scholar
  76. Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta A Mol Biomol Spectrosc 99:166–173CrossRefGoogle Scholar
  77. Rajeshkumar S, Kannan C, Annadurai G (2012) Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int J Pharma Bio Sci 3(4):502–510Google Scholar
  78. Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3(1):44CrossRefGoogle Scholar
  79. Resgalla C, Noldin JA, Tamanaha MS, Deschamps FC, Eberhardt DS, Rörig LR (2007) Risk analysis of herbicide quinclorac residues in irrigated rice areas, Santa Catarina, Brazil. Ecotoxicology 16(8):565–571CrossRefGoogle Scholar
  80. Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70Google Scholar
  81. Salvadori MR, Lepre LF, Ando RA, do Nascimento CAO, Corrêa B (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. PLoS ONE 8(11):e80519CrossRefGoogle Scholar
  82. Saunders JA, Lee MK, Dhakal P, Ghandehari SS, Wilson T, Billor MZ, Uddin A (2018) Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite. Appl Geochem 96:233–243CrossRefGoogle Scholar
  83. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012CrossRefGoogle Scholar
  84. Selvakumar P, Viveka S, Prakash S, Jasminebeaula S, Uloganathan R (2012) Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived Streptomyces rochei. Int J Pharma Bio Sci 3(3):188–197Google Scholar
  85. Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182CrossRefGoogle Scholar
  86. Sen K, Sinha P, Lahiri S (2011) Time dependent formation of gold nanoparticles in yeast cells: a comparative study. Biochem Eng J 55(1):1–6CrossRefGoogle Scholar
  87. Sen F, Boghossian AA, Sen S, Ulissi ZW, Zhang J, Strano MS (2012a) Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6(12):10632–10645CrossRefGoogle Scholar
  88. Sen S, Sen F, Boghossian AA, Zhang J, Strano MS (2012b) Effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J Phys Chem C 117(1):593–602CrossRefGoogle Scholar
  89. Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118CrossRefGoogle Scholar
  90. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923CrossRefGoogle Scholar
  91. Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol Appl Sci 3(9):374–383Google Scholar
  92. Sharma B, Purkayastha DD, Hazra S, Thajamanbi M, Bhattacharjee CR, Ghosh NN, Rout J (2014) Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C. Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst Eng 37(12):2559–2565CrossRefGoogle Scholar
  93. Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arab J Chem. Google Scholar
  94. Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci 22(4):661–665CrossRefGoogle Scholar
  95. Shi G, Li Y, Xi G, Xu Q, He Z, Liu Y, Zhang J, Cai J (2017) Rapid green synthesis of gold nanocatalyst for high-efficiency degradation of quinclorac. J Hazard Mater 335:170–177CrossRefGoogle Scholar
  96. Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6(4):365–369CrossRefGoogle Scholar
  97. Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3(2):145–151CrossRefGoogle Scholar
  98. Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17(4):835–840CrossRefGoogle Scholar
  99. Taniguchi N (1974) On the basic concept of nano-technology. In: Proceedings of the international conference on production engineering, Tokyo, Part II. Japan Society of Precision EngineeringGoogle Scholar
  100. Ternes TA, Joss A, Siegrist H (2004) Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38:392ACrossRefGoogle Scholar
  101. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262CrossRefGoogle Scholar
  102. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1(1):65–79CrossRefGoogle Scholar
  103. Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. J Miner Met Mater Soc 62(12):102–104CrossRefGoogle Scholar
  104. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40CrossRefGoogle Scholar
  105. Verma A, Dua R, Singh A, Bishnoi NR (2015) Biogenic sulfides for sequestration of Cr(VI), COD and sulfate from synthetic wastewater. Water Sci 29(1):19–25CrossRefGoogle Scholar
  106. Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S (2017a) Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. J Hazard Mater 339:310–319CrossRefGoogle Scholar
  107. Wang X, Zhang D, Pan X, Lee DJ, Al-Misned FA, Mortuza MG, Gadd GM (2017b) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273CrossRefGoogle Scholar
  108. Wang PT, Song YH, Fan HC, Yu L (2018) Bioreduction of azo dyes was enhanced by in situ biogenic palladium nanoparticles. Bioresour Technol 266:176–180CrossRefGoogle Scholar
  109. Wu R, Wu H, Jiang X, Shen J, Faheem M, Sun X, Li J, Han W, Wang L, Liu X (2017) The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater. Environ Sci Pollut Res 24(11):10570–10583CrossRefGoogle Scholar
  110. Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2014) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53CrossRefGoogle Scholar
  111. Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757Google Scholar
  112. Zhou D, Kim DG, Ko SO (2015) Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1. J Ind Eng Chem 24:132–139CrossRefGoogle Scholar
  113. Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate. Sci Iran 18(6):1631–1635CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Department of Environmental Science and EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations