Advertisement

A lean method for determination of dynamic capacity of a sorbent at multiple sorption of cations

  • V. I. Vigdorovich
  • M. V. Vigdorowitsch
  • L. E. TsygankovaEmail author
  • M. N. Uryadnikova
  • N. V. Shel
Original Paper
  • 20 Downloads

Abstract

A lean method for calculation of the dynamic capacity of a sorbent as the time function has been suggested that employs a limited amount of experimental data for a sorption process of any duration and allows to obtain an analytical solution by quadrature. To its input parameters belongs a linear flow rate in an adsorber (column) rather than a volume flow rate. This simplifies a reproduction of the sorption process with the target kinetic characteristics at constructively different devices. The method applicability is independent of a kind of sorbent as well as of a number of sorbates in a multicomponent solution. The present paper represents both a theory of the method and its application to a particular case of the concurrent sorption of cations of three heavy metals, Cu(II), Ni(II) and Zn(II), on a natural multifunctional clay-like sorbent glauconite.

Keywords

Dynamic capacity Sorption Cation Pollutant Glauconite Clay-like 

Notes

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

References

  1. Abollino O, Giacomino A, Malandrino M et al (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236CrossRefGoogle Scholar
  2. Almeida Neto AF, Vieira MGA, Gimenes ML et al (2014) Adsorption and desorption processes for cooper removal from water using different eluents and calcined clay as adsorbent. J Water Process Eng 3:90–97CrossRefGoogle Scholar
  3. Belenova SV, Vigdorovich VI, Shel NV et al (2015) Sorbtsionnaya sposobnost prirodnykh sorbentov. Vestn Tambov univ Seriya Yestestvennye tekh nauki 20:388–396Google Scholar
  4. Belova TP (2015) Adsorbtsiya margantsa i svintsa naturalnym tseolitom iz vodnykh rastvorov. Sorbt khromatograficheskie Protsessy 15:630–635Google Scholar
  5. Chernyakova RM, Kaysynbaeva RA, Kozhabekova NN et al (2016) Zakonomernosti sorbtsii medi prirodnym glaukonitom. Izvestiya natsionalnoy akademii nauk Respubliki Kazakhstan. Seriya khimii i tekhnologii 2:115–122Google Scholar
  6. Dudareva GN, Petukhova GA, Nguen ATN et al (2013) Issledovanie sorbtsii ionov nikelya (II) na uglerodnykh sorbentakh. Fizikokhimiya poverkhnosti i zashchita materialov 49:389–396Google Scholar
  7. Dudareva GN, Randin OI, Petukhova GA et al (2015) O mekhanizme sorbtsii ionov nikelya (II) modifitsirovannymi uglerodnymi sorbentami. Fizikokhim zashchita materialov 51:582–586Google Scholar
  8. Egirany DE, Baker AR, Andrews JE (2005) Copper and zinc removal from aqueous solution by mixed mineral systems: I. Reactivity and removal kinetics. J Colloid Interface Sci 291:319–325CrossRefGoogle Scholar
  9. Goldovskaya-Peristaya LF, Volovicheva HA, Vezentsev AI et al (2011) Izoterma sorbtsii ionov strontsiya montmorillonit- gidroslyudnymi glinami. Sorbtsionnye i khromatograficheskie protsessy 11:165–171Google Scholar
  10. Kuznetsov AM (1997) Charge transfer in chemical reaction kinetics. Presses polytechniques et universitaires romandes, LausanneGoogle Scholar
  11. Liu Z, Zhou S (2010) Adsorption of copper and nickel on Na–bentonite. Process Saf Environ Prot 88:62–66CrossRefGoogle Scholar
  12. Pomazkina OI, YeG F, Pozhidaev Y (2015) Adsorbtsiya ionov medi (II) geylanditom kaltsiya. Fizikokhimiya poverkhnosti i zashchita materialov 51:370–374Google Scholar
  13. Ramazanov A, Yesmail GK, Sveshnikova DA (2015) Kinetika i ter-modinamika sorbtsii ionov tyazhelykh metallov na montmorillonitsoder-zhashchey gline. Sorbtsionnye i khromatograficheskie protsessy 15:672–682Google Scholar
  14. Samarskij AN (1982) Vvedenie v chislennye metody. Nauka, MoscowGoogle Scholar
  15. Shikin YeV, Boreskov AV (1995) Kompjuternaya grafika. Dinamika, realisticheskie izobrazheniya. Dialog-MIFI, MoscowGoogle Scholar
  16. Singh KK, Rastogy R, Hasan SH (2005) Removal of Cr(VI) from wastewater using rice bran. J Colloid Interface Sci 290:61–68CrossRefGoogle Scholar
  17. Srivastava P, Singh B, Angove M (2005) Competitive adsorption behavior of heavy metals on kaolinite. J Colloid Interface Sci 290:28–38CrossRefGoogle Scholar
  18. Sviridov AV, Yurchenko VV, Sviridov VV et al (2016) Sorbtsiya kationov medi i nikelya na sloistykh alyumosilikatakh. Sorbtsionnye i khromatograficheskie protsessy 16:78–86Google Scholar
  19. Teutli-Sequeira M, Solache-Ríos V, Martínez-Miranda I et al (2014) Comparison of aluminium modified natural materials in the removal of fluoride ions. J Colloid Interface Sci 418:254–260CrossRefGoogle Scholar
  20. Vieira MGA, Almeida Neto AF, Gimenes ML et al (2010) Removal of nickel on Bofe bentonite calcined clay in porous bed. J Hazard Mater 176:109–118CrossRefGoogle Scholar
  21. Vigdorovich VI, Tsygankova LE (2009) Electrochemical and corrosion behaviour of metals in acidic alcohol and water-alcohol media. Radiotekhnika, MoscowGoogle Scholar
  22. Vigdorovich VI, Esina MN, Shel NV et al (2016a) Sorption of calcium and magnesium cations on glauconite from running chloride solutions. Sorbtsionnye i Khromatografitcheskie protsessy 16:533–543Google Scholar
  23. Vigdorovich VI, Tsygankova LE, Filippova OB et al (2016b) Glaukonit kak ekologicheski bezopasnyy sorbent dlya umyagcheniya pitevoy i pitatelnoy kotelnoy vody. Khimicheskaya tekhnologiya 17:129–137Google Scholar
  24. Vigdorovich VI, Tsygankova LE, Shel NV et al (2016c) Otsenka udelnoy dinamicheskoy emkosti sorbenta pri sorbtsii iz protochnykh rastvorov. In: Materials of the XII international scientific and practical conference “cutting-edge science-2016”, Sheffield, Science and education LTD, vol 15, pp 30–33Google Scholar
  25. Vigdorovich VI, Tsygankova LE, Esina MN et al (2017a) Calculation of the dynamic sorbent capacity in the presence of two sorbates. J Water Process Eng 20:180–186CrossRefGoogle Scholar
  26. Vigdorovich VI, Tsygankova LE, Esina MN et al (2017b) Sorption of nickel cations on the glauconite concentrate out of running chloride solutions. Khimicheskaja tekhnologiya 18:462–468Google Scholar
  27. Vigdorovich VI, Tsygankova LE, Shel NV et al (2018) Glauconite Bondarskogo mestorozhdenija (sorbtsionnaja sposobnost’, perspektivy ispolzovanija). Isdatelstvo Pershina, TambovGoogle Scholar
  28. Vishnyakov YaD, Burceva NN, Kiseleva SP et al (2015) Normirovanie i snizhenie zagryazneniya okruzhayushchej sredy. Akademiya, MoscowGoogle Scholar
  29. Volfkovich YuM, Bagotzky VS, Sosenkin VE et al (2001) The standard contact porosimetry. Colloids Surf A Physicochem Eng Asp 187:349–365CrossRefGoogle Scholar
  30. Zhao J, Zhy YJ, Wu J et al (2014) Chitosan-coated mesoporous microspheres of calcium cilicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions. J Colloid Interface Sci 418:208–215CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.All-Russian Scientific Research Institute for Use of Machinery and Oil ProductsTambovRussia
  2. 2.Angara GmbHDüsseldorfGermany
  3. 3.The G.R. Derzhavin State UniversityTambovRussia
  4. 4.Tambov State Technical UniversityTambovRussia

Personalised recommendations