Detecting vegetation stress as a soil contamination proxy: a review of optical proximal and remote sensing techniques

  • A. GholizadehEmail author
  • V. Kopačková


Soil contamination is a worldwide crisis, which diminishes food and agricultural production. Alterations in the soil environment due to soil contamination cause biophysical and biochemical changes in vegetation. Due to dynamic nature of these changes, early monitoring can permit for preventive interferences before intense and sometimes inevitable vegetation and soil problems occur. As plants are rooted in soil substrate, vegetation changes can be used as bio-indicators of soil conditions. Traditionally, vegetation changes have been usually determined by visual analysis or detected after major destructive sampling during the growth period. As the characteristics of vegetation influence its spectral properties, effective remote and non-contact detection methods offer an alternative and near real-time way for detecting plant changes, even prior to visual symptoms and negative effects appearance. The aim of the current study is to review the potential of optical proximal and remote sensing techniques at different platforms for indirect assessment of plant–soil interactions via monitoring vegetation anomalies related to soil contamination. It is strongly felt that this rapidly progressing technological direction will permit extending the use of the techniques to geology, soil science and precision agriculture and an overall broad range of applications.


Bio-indicator Proximal sensing Remote sensing Soil contamination Vegetation stress 



The authors would like to thank the financial support of the Ministry of Education, Youth and Sport of the Czech Republic project CZECH-ISRAELI COOPERATIVE SCIENTIFIC RESEARCH (Project No. 8G15004). The support of the Czech Science Foundation (Project No. 18-28126Y) is also appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Aasen H, Burkart A, Bolten A, Bareth G (2015) Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance. ISPRS J Photogramm Remote Sens 108:245–259CrossRefGoogle Scholar
  2. Arellano P, Tansey K, Balzter H, Boyd DS (2015) Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ Pollut 205:225–239CrossRefGoogle Scholar
  3. Arp GK (1992) An integrated interpretation for the origin of the Patrick Draw oil field sage anomaly. Bull Am Assoc Petrol Geol 76:301–306Google Scholar
  4. Arthur JJ, Leone IA, Flower FB (1985) The response of tomato plants to simulated landfill gas mixtures. J Environ Sci Health 20(8):913–925Google Scholar
  5. Asner GP (1998) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64:234–253CrossRefGoogle Scholar
  6. Asner GP, Martin RE (2016) Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob Ecol Conserv 8:212–219CrossRefGoogle Scholar
  7. Bammel BH, Birnie RW (1994) Spectral reflectance response of big sagebrush to hydrocarbon-induced stress in the Bighorn basin, Wyoming. Photogramm Eng Remote Sensing 60:87–96Google Scholar
  8. Bayat B, Van der Tol C, Verhoef W (2016) Remote sensing of grass response to drought stress using spectroscopic techniques and canopy reflectance model inversion. Remote Sens 8(7):557CrossRefGoogle Scholar
  9. Berger M, Moreno J, Johannessen JA, Levelt PF, Hanssen RF (2012) ESA’s sentinel missions in support of earth system science. Remote Sens Environ 120:84–90CrossRefGoogle Scholar
  10. Bergfeld D, Evans WC, Howle JF, Farrar CD (2006) Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley caldera, eastern California, USA. J Volcanol Geotherm Res 152:140–156CrossRefGoogle Scholar
  11. Berni JAJ, Zarco-Tejada PJ, Suarez L, Fereres E (2009a) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. Trans Geosci Remote Sens 47:722–738CrossRefGoogle Scholar
  12. Berni JAJ, Zarco-Tejada PJ, Suarez L, Gonzalez-Dugo V, Fereres E (2009b) Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int Arch Photogram Remote Sens Spatial Inform Sci 38:1–6Google Scholar
  13. Birk RJ, McCord TB (1994) Airborne hyperspectral sensor systems. IEEE Aerosp Electron Syst Mag 9:26–33CrossRefGoogle Scholar
  14. Bizecki RD, Knight JD, Farrell RE, Germida JJ (2004) Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands. Can J Bot 82:22–30CrossRefGoogle Scholar
  15. Boru G, Vantoai T, Alves J, Hua D, Knee M (2003) Responses of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. Ann Bot 91:447–453CrossRefGoogle Scholar
  16. Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475CrossRefGoogle Scholar
  17. Brown TB, Hultine KR, Steltzer H, Denny EG, Denslow MW, Granados J, Henderson S, Moore D, Nagai S, Sanclements M, Anchez-Azofeifa A, Sonnentag O, Tazik D, Richardson A (2016) Using phenocams to monitor our changing earth: toward a global phenocam network. Front Ecol Environ 14:84–93CrossRefGoogle Scholar
  18. Buitrago MF, Groen TA, Hecker CA, Skidmore AK (2016) Changes in thermal infrared spectra of plants caused by temperature and water stress. ISPRS J Photogram Remote Sens 111:22–31CrossRefGoogle Scholar
  19. Buitrago MF, Groen TA, Hecker CA, Skidmore AK (2017) Identifying leaf traits that signal that signal stress in TIR spectra. ISPRS J Photogram Remote Sens 125:132–145CrossRefGoogle Scholar
  20. Chaerle L, Van der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta Gene Struct Expr 1519:153–166CrossRefGoogle Scholar
  21. Chappelle EW, McMurtrey JE, Wood FM, Newcomb WW (1984) Laser-induced fluorescence of green plants. 2. LIF caused by nutrient deficiencies in corn. Appl Opt 23:139–142CrossRefGoogle Scholar
  22. Cheng YB, Zarco-Tejada PJ, Riano D, Rueda CA, Ustin SL (2006) Estimating vegetation water content with hyperspectral data for different canopy scenarios: relationships between AVIRIS and MODIS indexes. Remote Sens Environ 105(4):354–366CrossRefGoogle Scholar
  23. Cho MA, Debba P, Mutanga O, Dudeni-Tlhone N, Magadla T, Khuluse SA (2012) Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health. Int J Appl Earth Obs Geoinf 16:85–93CrossRefGoogle Scholar
  24. Chuncai Z, Guijian L, Dun W, Ting F, Ruwei W, Xiang F (2014) Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China. Chemosphere 95:193–199CrossRefGoogle Scholar
  25. Clevers JGPW, Kooistra L, Salas EAL (2004) Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int J Remote Sens 25(19):1–13CrossRefGoogle Scholar
  26. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogram Remote Sens 92:79–97CrossRefGoogle Scholar
  27. Dalsted K, Paris J, Clay D, Clay SA, Reese C, Chang J (2003) Selecting the appropriate satellite remote sensing product for precision farming. In: Clay SA (ed) Site specific management guidelines. Potash and Phosphate Institute, NorcrossGoogle Scholar
  28. Dunagan SC, Gilmore MS, Varekamp JC (2007) Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rape P.). Environ Pollut 148(1):301–311CrossRefGoogle Scholar
  29. Elachi C, Van Zyl JJ (2006) Introduction to the physics and techniques of remote sensing. Wiley, New JerseyCrossRefGoogle Scholar
  30. Etiope G, Klusman RW (2002) Geologic emissions of methane into the atmosphere. Chemosphere 49:779–791CrossRefGoogle Scholar
  31. Faye E, Rebaudo F, Yanez-Cajo D, Cauvy-Fraunie S, Dangles O (2016) A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods Ecol Evol 7:437–446CrossRefGoogle Scholar
  32. Fedotov Y, Bullo O, Belov M, Gorodnichev V (2016) Experimental research of reliability of plant stress state detection by laser-induced fluorescence method. Int J Opt 2016:1–6CrossRefGoogle Scholar
  33. Flower FB, Gilman EF, Leone IA (1981) Landfill gas, what does to trees and how its injurious effects maybe prevented. J Arboric 7(2):43–51Google Scholar
  34. Fujii K (2014) Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecol Res 29(3):371–381CrossRefGoogle Scholar
  35. Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitrou M, Papanastasis VP, Quested H, Quetier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thebault A, Vile D, Zarovali MP (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985CrossRefGoogle Scholar
  36. Gerhards M, Rock G, Schlerf M, Udelhoven T (2016) Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. Int J Appl Earth Obs Geoinf 53:27–39CrossRefGoogle Scholar
  37. Gholizadeh A, Boruvka L, Vasat R, Saberioon MM, Klement A, Kratina J, Tejnecky V, Drabek O (2015) Estimation of heavy metals contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study. PLoS ONE 10(2):e0117457CrossRefGoogle Scholar
  38. Gholizadeh A, Misurec J, Kopačková V, Mielke C, Rogass C (2016) Assessment of Red-Edge position extraction techniques: a case study for Norway spruce forests using HyMap and simulated Sentinel-2 data. Forests 7(10):226CrossRefGoogle Scholar
  39. Gholizadeh A, Saberioon MM, Ben-Dor E, Boruvka L (2018) Monitoring of selected soil contaminants using proximal and remote sensing techniques: background, state-of-the-art and future perspectives. Crit Rev Environ Sci Technol 48(3):243–278CrossRefGoogle Scholar
  40. Gianinetto M, Lechi G (2004) The development of superspectral approaches for the improvement of land cover classification. IEEE Trans Geosci Remote Sens 42(11):2670–2679CrossRefGoogle Scholar
  41. Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75(3):272–281CrossRefGoogle Scholar
  42. Gotze C, Beyer F, Glasser C (2016a) Pioneer vegetation as an indicator of the geochemical parameters in abandoned mine sites using hyperspectral airborne data. Environ Earth Sci 75:613CrossRefGoogle Scholar
  43. Gotze C, Glasser C, Jung A (2016b) Detecting heavy metal pollution of floodplain vegetation in a pot experiment using reflectance spectroscopy. Int J River Basin Manag 14(4):1–24CrossRefGoogle Scholar
  44. Govender M, Dye P, Weiersbye I (2009) Review of commonly used remotesensing and ground-based technologies to measure plant water stress. Water SA 35:741–752CrossRefGoogle Scholar
  45. Guyot G (1989) Signatures spectrales des surfaces naturelles. Collec. Teledetection Satellitaire, 5 (Paradigme, Caen.) 178Google Scholar
  46. Hoeks J (1972) Effects of leaking natural gas on soil and vegetation in urban areas. Soil Sci 120(4)Google Scholar
  47. Hoffer AM (1978) Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data. In: Swain PH, Davis SM (eds) Remote sensing: the quantitative approach. McGraw-Hili Book Company, New York, pp 227–289Google Scholar
  48. Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. Int J Remote Sens 4(2):273–288CrossRefGoogle Scholar
  49. Jacquemoud S, Baret F, Hanocq JF (1992) Modeling spectral and bidirectional soil reflectance. Remote Sens Environ 41:123–132CrossRefGoogle Scholar
  50. Jones VT, Drozd RJ (1983) Predictions of oil or gas potential by near surface geochemistry. Am Assoc Pet Geol Bull 67:932–952Google Scholar
  51. Kochian LV, Hoekenga AO, Pineros MA (2004) How do plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493CrossRefGoogle Scholar
  52. Komossa D, Langebartels C, Sandermann HJ (1995) Metabolic processes for organic chemicals in plants. In: Trapp S, McFarlane JC (eds) Plant contamination: modeling and simulation of organic chemical processes. CRC Press Inc., Boca Raton, pp 69–103Google Scholar
  53. Kooistra L, Salas EAL, Clevers JGPW, Wehrens R, Leuven RSEW, Nienhuis PH, Buydens LMC (2004) Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ Pollut 127:281–290CrossRefGoogle Scholar
  54. Kopačková V (2014) Using multiple spectral feature analysis for quantitative pH mapping in a mining environment. Int J Appl Earth Obs Geoinf 28:28–42CrossRefGoogle Scholar
  55. Kopačková V, Mišurec J, Lhotáková Z, Oulehle F, Albrechtová J (2014) Using multi-date high spectral resolution data to assess the physiological status of macroscopically undamaged foliage on a regional scale. Int J Appl Earth Obs Geoinf 27:169–186CrossRefGoogle Scholar
  56. Kuenzer C, Ottinger M, Wegmann M, Guo H (2014) Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks. Int J Remote Sens 35:6599–6647CrossRefGoogle Scholar
  57. Kumar L, Schmidt K, Dury S, Skidmore A (2001) Imaging spectrometry and vegetation science. In: Van der Meer FD, Jong SM (eds) Imaging spectrometry: basic principles and prospective applications. Springer, Dordrecht, pp 111–155Google Scholar
  58. Lausch A, Erasmi S, King DJ, Magdon P, Heurich M (2016) Understanding forest health with remote sensing: part I—a review of spectral traits, processes and remote-sensing characteristics. Remote Sens 8(1):1029CrossRefGoogle Scholar
  59. Lausch A, Erasmi S, King DJ, Magdon P, Heurich M (2017) Understanding forest health with remote sensing: part II—a review of approaches and data models. Remote Sens 9(2):129CrossRefGoogle Scholar
  60. Li XQ, Liu XN, Liu ML, Wang CC, Xia XP (2015) A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress. Int J Appl Earth Obs Geoinf 36:41–53CrossRefGoogle Scholar
  61. Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19(1):S29–S85CrossRefGoogle Scholar
  62. Lindroos AJ, Derome J, Raitio H, Rautio P (2007) Heavy metal concentrations in soil solution, soil and needles in a Norway spruce stand on an acid sulphate forest soil. Water Air Soil Pollut 180:155–170CrossRefGoogle Scholar
  63. Llewellyn GM, Curran PJ (1999) Understanding the grassland red-edge using a combined leaf and canopy model. In: Proceeding of the 25th annual conference of the remote sensing society: from data to information, Cardiff, UKGoogle Scholar
  64. Lucas RE, Davis JF (1961) Relationship between pH value of organic soils and availabilities of 12 plant nutrients. Soil Sci 92(3):177–182CrossRefGoogle Scholar
  65. Macek I, Pfanz H, Francetic V, Batic F, Vodnik D (2005) Root respiration response to high CO2 concentrations in plants from natural CO2 springs. Environ Exp Bot 54:90–99CrossRefGoogle Scholar
  66. Mahlein AK, Steiner U, Hillnhutter C, Dehne HW, Oerke EC (2012) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8:3CrossRefGoogle Scholar
  67. Majasalmi T, Rautiainen M (2016) The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study. Remote Sens Lett 7:427–436CrossRefGoogle Scholar
  68. Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20:65–74CrossRefGoogle Scholar
  69. Masaitis G, Mozgeris G, Augustaitis A (2013) Spectral reflectance properties of healthy and stressed coniferous trees. iForest 6:30–36CrossRefGoogle Scholar
  70. Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969CrossRefGoogle Scholar
  71. Mišurec J, Kopačková V, Lhotáková Z, Entcheva-Campbell P, Albrechtová J (2016) Detection of spatio-temporal changes of Norway Spruce forest stands in ore mountains using Landsat time series and airborne hyperspectral imagery. Remote Sens. 8(2):92CrossRefGoogle Scholar
  72. Noomen MF, Skidmore AK, Van der Meer FD, Prins HHT (2006) Continuum removed band depth analysis for detecting the effects of natural gas, methane and ethane on maize reflectance. Remote Sens Environ 105:262–270CrossRefGoogle Scholar
  73. Noomen MF, Van der Werff HMA, Van der Meer FD (2012) Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage. Ecol Inform 8:55–64CrossRefGoogle Scholar
  74. Oerke EC, Steiner U (2010) Potential of digital thermography for disease control. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection—the challenge and use of heterogeneity. Springer, Netherlands, pp 167–182CrossRefGoogle Scholar
  75. Pause M, Schweitzer C, Rosenthal M, Keuck V, Bumberger J, Dietrich P, Heurich M, Jung A, Lausch A (2016) In situ remote sensing integration to assess forest health—a review. Remote Sens 8(6):471CrossRefGoogle Scholar
  76. Pell EJ, Dann MS (1991) Multiple stress-induced foliar senescence and implications for whole plant longevity. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic, San Diego, pp 189–206CrossRefGoogle Scholar
  77. Pirone PP (1960) The response of shade trees to natural gas. Gard. J. 10:25–29Google Scholar
  78. Pruvot C, Douay F, Fourrier H, Waterlot C (2006) Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. J Soils Sediments 6(4):215–220CrossRefGoogle Scholar
  79. Pysek P, Pysek A (1989) Changes in vegetation caused by experimental leakage of natural gas. Weed Res 29:193–204CrossRefGoogle Scholar
  80. Rascher U, Alonso L, Burkart A, Cilia C, Cogliati S, Colombo R, Damm A, Drusch M, Guanter L, Hanus J, Hyvarinen T, Julitta T, Jussila J, Kataja K, Kokkalis P, Kraft S, Kraska T, Matveeva M, Moreno J, Muller O, Panigada C, Pikl M, Pinto F, Prey L, Pude R, Rossini M, Schickling A, Schurr U, Schuttemeyer D, Verrelst J, Zemek F (2015) Sun-induced fluorescence—a new probe of photosynthesis: first maps from the imaging spectrometer HyPlant. Glob Chang Biol 21:4673–4684CrossRefGoogle Scholar
  81. Reusen I, Bertels L, Debacker S, Debruyn W, Scheunders P, Sterckx S, Van den Broek W (2003) Detection of stressed vegetation for mapping heavy metal polluted soil. In: Proceeding of the 3rd EARSeL workshop on imaging spectroscopy, Oberpfaffenhofen, GermanyGoogle Scholar
  82. Riano D, Vaughan P, Chuvieco E, Zarco-Tejada PJ, Ustin SL (2005) Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level. IEEE Trans Geosci Remote Sens 43(4):821–826CrossRefGoogle Scholar
  83. Roelofsen HD, Van Bodegom PM, Kooistra L, Van Amerongen JJ, Witte JPM (2015) An evaluation of remote sensing derived soil pH and average spring groundwater table for ecological assessments. Int J Appl Earth Obs Geoinf 43:149–159CrossRefGoogle Scholar
  84. Rosso PH, Pushnik JC, Lay M, Ustin SL (2005) Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ Pollut 137:241–252CrossRefGoogle Scholar
  85. Saberioon MM, Amin MSM, Anuar AR, Gholizadeh A, Wayayok A, Khairunniza-Bejo S (2014a) Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int J Appl Earth Obs Geoinf 32:35–45CrossRefGoogle Scholar
  86. Saberioon MM, Amin MSM, Gholizadeh A, Ezrin MH (2014b) A review of optical methods for assessing nitrogen contents during rice growth. Appl Eng Agric 30(4):657–669Google Scholar
  87. Sahoo PK, Tripathy S, Equeenuddin SM, Panigrahi MK (2012) Geochemical characteristics of coal mine discharge vis-a-vis behavior of rare earth elements at Jaintia Hills Coalfield, Northeastern India. J Geochem Explor 112:235–243CrossRefGoogle Scholar
  88. Sanches ID, Souza Filho CR, Magalhaes LA, Quiterio GCM, Alves MN, Oliveira WJ (2013a) Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: an approach using the red edge spectral feature. Environ Pollut 174:16–27CrossRefGoogle Scholar
  89. Sanches ID, Souza Filho CR, Magalhaes LA, Quiterio GCM, Alves MN, Oliveira WJ (2013b) Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy. ISPRS J Photogram Remote Sens 78:85–101CrossRefGoogle Scholar
  90. Schaaf W, Gast M, Wilden R, Scherzer J, Blechschmidt R, Huttl RF (1999) Temporal and spatial development of soil solution chemistry and element budgets in different mine soils of the Lusatian lignite mining area. Plant Soil 213:169–179CrossRefGoogle Scholar
  91. Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P, Miller C, Frankenberg C, Hibbard K, Cox P (2015) Observing terrestrial ecosystems and the carbon cycle from space. Glob Change Biol 21:1762–1776CrossRefGoogle Scholar
  92. Schulze ED, Beck E, Muller-Hohenstein K (2005) Plant ecology. In: Czeschlik D (ed) Environment as Stress factor: stress physiology of plants. Springer, Berlin, p 702Google Scholar
  93. Schumacher D (1996) Hydrocarbon-induced alteration of soils and sediments. In: Schumacher D, Abrams MA (eds) Hydrocarbon migration and its near surface expression, vol 66. AAPG Memoir, Boulder, pp 71–89Google Scholar
  94. Serrano L, Ustin SL, Roberts DA, Gamon JA, Penuelas J (2000) Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens Environ 74(3):570–581CrossRefGoogle Scholar
  95. Severtson D, Callow N, Flower K, Neuhaus A, Olejnik M, Nansen C (2016) Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precis Agric 17(6):659–677CrossRefGoogle Scholar
  96. Shi T, Wang J, Chen Y, Wu G (2016) Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants. Int J Appl Earth Obs Geoinf 52:95–103CrossRefGoogle Scholar
  97. Smith KL, Steven MD, Colls JJ (2004a) Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens Environ 92:207–217CrossRefGoogle Scholar
  98. Smith KL, Steven MD, Colls JJ (2004b) Spectral responses of pot-grown plants to displacement of soil oxygen. Int J Remote Sens 25(20):4395–4410CrossRefGoogle Scholar
  99. Souza Filho CR, Augusto VA, Oliveira WJ, Lammoglia T (2008) Deteccao de exsudacoes de hidrocarbonetos por geobotanica e sensoriamento remoto multitemporal: estudo de caso no remanso do fogo (MG). Rev Bras Geocienc 38:228–243CrossRefGoogle Scholar
  100. Steiner U, Burling K, Oerke EC (2008) Sensorik für einen präzisierten Pflanzenschutz. Gesunde Pflanz 60:131–141CrossRefGoogle Scholar
  101. Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J (2010) Visible and near infrared spectroscopy in soil science. In: Sparks DL (ed) Advances in agronomy. Academic, Burlington, pp 163–215Google Scholar
  102. Steven MD, Smith KL, Beardsley MD, Colls JJ (2006) Oxygen and methane depletion in soil affected by leakage of natural gas. Eur J Soil Sci 57(6):800–807CrossRefGoogle Scholar
  103. Tattaris M, Reynolds MP, Chapman SC (2016) A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front Plant Sci 7:1131CrossRefGoogle Scholar
  104. Thenkabail PS, Lyon JG, Huete A (2012) Advances in hyperspectral remote sensing of vegetation in agricultural croplands. In: Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation. CRC Press, New York, pp 3–33Google Scholar
  105. Tuominen J, Haapanen R, Lipping T, Kuosmanen V (2009) Remote sensing of forest health. INTECH Open Access Publisher, RijekaCrossRefGoogle Scholar
  106. Van der Meer FD, Van Dijk P, Van der Werff HMA, Yang H (2002) Remote sensing and petroleum seepage: a review and case study. Terra Nova 14(1):1–17CrossRefGoogle Scholar
  107. Van der Meij B, Kooistra L, Suomalainen J, Barel JM, De Deyn GB (2017) Remote sensing of plant trait responses to field-based plant–soil feedback using UAV-based optical sensors. Biogeosciences 14:733–749CrossRefGoogle Scholar
  108. Van der Werff HMA (2006) Knowledge based remote sensing of complex objects recognition of spectral and spatial patterns resulting from natural hydrocarbon seepages. ITC Dissertation, ITC, Enschede, NetherlandsGoogle Scholar
  109. Van der Werff HMA, Van der Meijde M, Jansma F, Van der Meer FD, Groothuis GJ (2008) A spatial-spectral approach for visualization of vegetation stress resulting from pipeline leakage. Sensors 8(6):3733–3743CrossRefGoogle Scholar
  110. Vane G, Goetz AFH (1993) Terrestrial imaging spectrometry: current status, future trends. Remote Sens Environ 44:117–126CrossRefGoogle Scholar
  111. Verkleij JOS, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguebel JP, Schroder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22CrossRefGoogle Scholar
  112. Viscarra Rossel RA, Adamchuk VI, Sudduth KA, McKenzie NJ, Lobsey C (2011) Proximal soil sensing: an effective approach for soil measurements in space and time. In: Sparks DL (ed) Advances in agronomy. Academic, Burlington, pp 237–282Google Scholar
  113. Wang Z, Wang T, Darvishzadeh R, Skidmore AK, Jones S, Suarez L, Woodgate W, Heiden U, Heurich M, Hearne J (2016) Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sens 8(6):491CrossRefGoogle Scholar
  114. Wegmann M, Leutner B, Dech S (2016) Remote sensing and GIS for ecologists: using open source software. Pelagic Publishing, ExeterGoogle Scholar
  115. Wu Y, Chen J, Wu X, Tian Q, Ji J (2005) Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Appl Geochem 20:1051–1059CrossRefGoogle Scholar
  116. Wulder MA, Coops NC (2014) Satellites: make earth observations open access. Nature 513:30–31CrossRefGoogle Scholar
  117. Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36(4):1062–1071CrossRefGoogle Scholar
  118. Yang QW, Shu WS, Qiu JW, Wang HB, Lan CY (2004) Lead in padd soils and rice plants and its potential health risk around Lechang lead/zinc mine, Guangdong, China. Environ Int 30:883–889CrossRefGoogle Scholar
  119. Yokoya N, Chan JCW, Segl K (2016) Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens 8(3):172CrossRefGoogle Scholar
  120. Zarco-Tejada PJ, Miller J, Morales A, Berjon A, Aguera J (2004) Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ 90(4):463–476CrossRefGoogle Scholar
  121. Zarco-Tejada PJ, Berjon A, Lopez-Lozano R, Miller J, Martin P, Cachorro V, Gonzalez M, De Frutos A (2005) Assessing vineyard condition with hyperspectral indices: leaf and canopy reflectance simulation in row-structured discontinuous canopy. Remote Sens Environ 99(3):271–287CrossRefGoogle Scholar
  122. Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13:693–712CrossRefGoogle Scholar
  123. Zhang C, Liu Y, Kovacs JM, Flores-Verdugo F, Flores de Santiago F, Chen K (2012) Spectral response to varying levels of leaf pigments collected from a degraded mangrove forest. J Appl Remote Sens 6(1):063501-1–063501-14Google Scholar
  124. Zinnert JC, Via SM, Young DR (2013) Distinguishing natural from anthropogenic stress in plants: physiology, fluorescence and hyperspectral reflectance. Plant Soil 366:133–141CrossRefGoogle Scholar
  125. Zurita-Milla R, Clevers JGPW, Schaepman ME (2008) Unmixing-based landsat TM and MERIS FR data fusion. IEEE Geosci Remote Sens Lett 5(3):453–457CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Czech Geological SurveyPrague 1Czech Republic
  2. 2.Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePragueCzech Republic

Personalised recommendations