A review of optimum conditions of transesterification process for biodiesel production from various feedstocks

  • S. Ishak
  • A. KamariEmail author


Development of low-cost, sustainable and environmentally friendly biodiesel is a key focus in the energy industry worldwide. It is known that selecting suitable raw feedstock materials and optimising an efficient transesterification process are crucial in biodiesel production. Effective and realistic strategies are imperative in order to boost the quantity and quality of biodiesel production. In fact, scientists and researchers have put great effort to improve the market value of their biodiesel products. In recent years, the feasibilities of several raw materials as feedstocks to produce biodiesel have been assessed by researchers. These materials were reported able to produce biodiesel that met international standards, namely the American Society for Test and Materials D6751 and European Standard 14214. Although these biodiesel products have met the quality criteria, their fatty acid methyl ester (FAME) contents differ. This review focuses on optimum conditions (methanol/oil molar ratio, amount of catalyst, reaction temperature and reaction time) of transesterification process for biodiesel production from various feedstocks. The influence of these factors on FAME composition is also discussed. This review is beneficial to scientists working on biodiesel production particularly for the evolution of eco-friendly and low-cost biodiesel.


Renewable energy Biofuel Biodiesel Feedstock Transesterification 



S. Ishak thanks the Ministry of Education Malaysia for providing a MyBrain15 (MyPhD) Scholarship Award. The authors also thank Mr Mah Iazam bin Mah Hussin from Eko Dinamik Resources for technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energ Convers Manag 63:138–148CrossRefGoogle Scholar
  2. Abdullah SHYS, Hanapi NHM, Azid A, Umar R, Juahir H, Khatoon H, Endut A (2017) A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew Sust Energ Rev 70:1040–1051CrossRefGoogle Scholar
  3. Adewale P, Dumont MJ, Ngadi M (2015) Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew Sust Energ Rev 45:574–588CrossRefGoogle Scholar
  4. Ahmad J, Yusup S, Bokhari A, Kamil RNM (2014) Study of fuel properties of rubber seed oil based biodiesel. Energ Convers Manag 78:266–275CrossRefGoogle Scholar
  5. Alptekin E, Canakci M (2011) Optimization of transesterification for methyl ester production from chicken fat. Fuel 90(8):2630–2638CrossRefGoogle Scholar
  6. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energ Rev 90:356–369CrossRefGoogle Scholar
  7. Angerbauer C, Siebenhofer MM, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99(8):3051–3056CrossRefGoogle Scholar
  8. Anuar MR, Abdullah AZ (2016) Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: a critical review. Renew Sust Energ Rev 58:208–223CrossRefGoogle Scholar
  9. Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297CrossRefGoogle Scholar
  10. Araújo BQ, Nunes RCDR, De Moura CVR, De Moura EM, Citó AMDGL, Dos Santos Júnior JR (2010) Synthesis and characterization of beef tallow biodiesel. Energy Fuels 24(8):4476–4480CrossRefGoogle Scholar
  11. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16(4):2070–2093CrossRefGoogle Scholar
  12. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2012) Production of biodiesel using high free fatty acid feedstocks. Renew Sust Energ Rev 16:3275–3285CrossRefGoogle Scholar
  13. Avhad MR, Marchetti JM (2015) A review on recent advancement in catalytic materials for biodiesel production. Renew Sust Energ Rev 50:696–718CrossRefGoogle Scholar
  14. Bardi U (2009) Peak oil: the four stages of a new idea. Energy 34(3):323–326CrossRefGoogle Scholar
  15. Baskar G, Aiswarya R (2016) Trends in catalytic production of biodiesel from various feedstocks. Renew Sust Energ Rev 57:496–504CrossRefGoogle Scholar
  16. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721CrossRefGoogle Scholar
  17. Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK (2016) Prospects of 2nd generation biodiesel as a sustainable fuel-Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sust Energ Rev 55:1109–1128CrossRefGoogle Scholar
  18. Borges ME, Díaz L (2012) Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew Sust Energ Rev 16(5):2839–2849CrossRefGoogle Scholar
  19. Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sust Energ Rev 16:4763–4784CrossRefGoogle Scholar
  20. Cai ZZ, Wang Y, Teng YL, Chong KM, Wang JW, Zhang JW, Yang DP (2015) A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Process Technol 137:186–193CrossRefGoogle Scholar
  21. Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35(5):431–441CrossRefGoogle Scholar
  22. Canakci M, Ozsezen AN, Arcaklioglu E, Erdil A (2009) Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Syst Appl 36(5):9268–9280CrossRefGoogle Scholar
  23. Carvalho AKF, da Conceição LRV, Silva JPV, Perez VH, de Castro HF (2017) Biodiesel production from Mucor circinelloides using ethanol and heteropolyacid in one and two-step transesterification. Fuel 202:503–511CrossRefGoogle Scholar
  24. Chakraborty R, Gupta AK, Chowdhury R (2014) Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: parametric sensitivity and fuel quality assessment. Renew Sust Energ Rev 29:120–134CrossRefGoogle Scholar
  25. Chakraborty R, Chatterjee S, Mukhopadhyay P, Barman S (2016) Progresses in waste biomass derived catalyst for production of biodiesel and bioethanol: a review. Procedia Environ Sci 35:546–554CrossRefGoogle Scholar
  26. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  27. Čičková H, Newton GL, Lacy RC, Kozánek M (2015) The use of fly larvae for organic waste treatment. Waste Manag 35:68–80CrossRefGoogle Scholar
  28. Converti A, Casazza AA, Ortiz EY, Perego P, Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151CrossRefGoogle Scholar
  29. Datta A, Mandal BK (2016) A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renew Sust Energ Rev 57:799–821CrossRefGoogle Scholar
  30. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energ Convers Manag 50(1):14–34CrossRefGoogle Scholar
  31. Diener S, Studt Solano NM, Roa Gutiérrez F, Zurbrugg C, Tockner K (2011) Biological treatment of municipal organic waste using Black Soldier Fly Larvae. Waste Biomass Valorization 2(4):357–363CrossRefGoogle Scholar
  32. Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25(8):338–342CrossRefGoogle Scholar
  33. Erwin TL (2004) The biodiversity question. How many species of terrestrial arthropods are there? In forest canopies: Second edition, Elsevier, London: 259–269Google Scholar
  34. Farobie O, Leow ZYM, Samanmulya T, Matsumura Y (2016) New insight in biodiesel production using supercritical 1-propanol. Energy Convers Manag 124:212–218CrossRefGoogle Scholar
  35. Foottit RG, Adler PH (2009) Insect biodiversity: science and society. Wiley Blackwell, HobokenCrossRefGoogle Scholar
  36. Fukuda H, Kond A, Noda H (2001) Biodiesel fuel production by transesterification. J Biosci Bioeng 92(5):405–406CrossRefGoogle Scholar
  37. Ghadge SV, Raheman H (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 28(6):601–605CrossRefGoogle Scholar
  38. Ghadge SV, Raheman H (2006) Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour Technol 97(3):379–384CrossRefGoogle Scholar
  39. Ghazali WNMW, Mamat R, Masjuki HH, Najafi G (2015) Effects of biodiesel from different feedstocks on engine performance and emissions: a review. Renew Sust Energ Rev 51:585–602CrossRefGoogle Scholar
  40. Ghosh S, Banerjee S, Das D (2017) Process intensification of biodiesel production from Chlorella sp. MJ 11/11 by single step transesterification. Algal Res 27:12–20CrossRefGoogle Scholar
  41. Gicquell RGM (2013) Introduction to Global Energy Issues (second). CRC Press, Taylor and Francis Group, Boca RatonCrossRefGoogle Scholar
  42. Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sust Energ Rev 72:445–464CrossRefGoogle Scholar
  43. Hasni K, Ilham Z, Dharma S, Varman M (2017) Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energ Convers Manag 149:392–400CrossRefGoogle Scholar
  44. Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A 363(1–2):1–10CrossRefGoogle Scholar
  45. Hook M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change-A review. Energy Policy 52:797–809CrossRefGoogle Scholar
  46. Issariyakul T, Dalai AK (2014) Biodiesel from vegetable oils. Renew Sust Energ Rev 31:446–471CrossRefGoogle Scholar
  47. Jeong GT, Yang HS, Park DH (2009) Optimization of transesterification of animal fat ester using response surface methodology. Bioresour Technol 100(1):25–30CrossRefGoogle Scholar
  48. Kakati J, Gogoi TK (2016) Biodiesel production from Kutkura (Meyna spinosa Roxb. Ex.) fruit seed oil: its characterization and engine performance evaluation with 10% and 20% blends. Energ Convers Manag 121:152–161CrossRefGoogle Scholar
  49. Kamel DA, Farag HA, Amin NK, Zatout AA, Ali RM (2018) Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: optimization and mechanism. Ind Crops Prod 111:407–413CrossRefGoogle Scholar
  50. Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210CrossRefGoogle Scholar
  51. Khatib H (2012) IEA world energy outlook 2011-A comment. Energy Policy 48:737–743CrossRefGoogle Scholar
  52. Kirubakaran M, Arul MSV (2018) Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. J Environ Chem Eng 6(4):4490–4503CrossRefGoogle Scholar
  53. Kudre TG, Bhaskar N, Sakhare PZ (2017) Optimization and characterization of biodiesel production from rohu (Labeo rohita) processing waste. Renew Energy 113:1408–1418CrossRefGoogle Scholar
  54. Kumar A, Sharma S (2011) Potential non-edible oil resources as biodiesel feedstock: an Indian perspective. Renew Sust Energ Rev 15(4):1791–1800CrossRefGoogle Scholar
  55. Leong SY, Kutty SRM, Malakahmad A, Tan CK (2015) Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Manag 47:84–90CrossRefGoogle Scholar
  56. Li Q, Zhen L, Hou Y, Yang S, Yu Z (2011a) Insect fat, a promising resource for biodiesel. J Pet Environ Biotechnol S2(1):2–4Google Scholar
  57. Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011b) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90(4):1545–1548CrossRefGoogle Scholar
  58. Li Q, Zheng L, Qiu N, Cai H, Tomberlin JK, Yu Z (2011c) Bioconversion of dairy manure by black soldier fly (Diptera: stratiomyidae) for biodiesel and sugar production. Waste Manag 31(6):1316–1320CrossRefGoogle Scholar
  59. Li Z, Yang D, Huang M, Hu X, Shen J, Zhao Z, Chen J (2012) Chrysomya megacephala (Fabricius) larvae: a new biodiesel resource. Appl Energy 94:349–354CrossRefGoogle Scholar
  60. Li W, Li Q, Zheng L, Wang Y, Zhang J, Yu Z, Zhang Y (2015) Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour Technol 194:276–282CrossRefGoogle Scholar
  61. Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88(4):1020–1031CrossRefGoogle Scholar
  62. Ma Y, Wang Q, Sun X, Wu C, Gao Z (2017) Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renew Energy 107:522–530CrossRefGoogle Scholar
  63. Mansir N, Yap YHT, Rashid U, Lokman IM (2016) Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energ Convers Manag 141:171–182CrossRefGoogle Scholar
  64. Manzano-agugliaro F, Montoya FG, Gil C, Alcayde A, Gómez J, Ba R (2011) Optimization methods applied to renewable and sustainable energy: a review. Renew Sust Energ Rev 15:1753–1766CrossRefGoogle Scholar
  65. Manzano-Agugliaro F, Sanchez-muros MJ, Barroso FG, Martínez-sánchez A, Rojo S (2012) Insects for biodiesel production. Renew Sust Energ Rev 16:3744–3753CrossRefGoogle Scholar
  66. Marchetti JMÃ, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sust Energ Rev 11:1300–1311CrossRefGoogle Scholar
  67. Marulanda VF, Anitescu G, Tavlarides LL (2010) Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. J Supercrit Fluids 54:53–60CrossRefGoogle Scholar
  68. Mazanov SV, Gabitova AR, Usmanov RA, Gumerov FM, Labidi S, Amar MB, Passarello J-P, Kanaev A, Volle F, Neindre BL (2016) Continuous production of biodiesel from rapeseed oil by ultrasonic assist transesterification in supercritical ethanol. J Supercrit Fluids 118:107–118CrossRefGoogle Scholar
  69. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846CrossRefGoogle Scholar
  70. Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Shahabuddin M, Palash SM, Hazrat MA (2013) Effect of biodiesel from various feedstocks on combustion characteristics engine durability and materials compatibility: a review. Renew Sust Energ Rev 28:441–455CrossRefGoogle Scholar
  71. Moser BR, Vaughn SF (2012) Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenergy 37:31–41CrossRefGoogle Scholar
  72. Musa IA (2014) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Petrol 25:21–31CrossRefGoogle Scholar
  73. Nguyen HC, Liang SH, Li SY, Su CH, Chien CC, Chen YJ, Huong DTM (2018) Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J Taiwan Inst Chem E 85:165–169CrossRefGoogle Scholar
  74. Noor CWM, Noor MM, Mamat R (2018) Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew Sust Energ Rev 94:127–142CrossRefGoogle Scholar
  75. Nurfitri I, Maniam GP, Hindrya N, Yusoff NHM, Ganesan S (2013) Potential of feedstock and catalysts from waste in biodiesel preparation: a review. Energy Convers Manag 74:395–402CrossRefGoogle Scholar
  76. OECD/Food and Agriculture Organization of the United Nations (2015) OECD-FAO agricultural outlook. OECD Publishing, ParisGoogle Scholar
  77. Oliveira DTd, Vasconcelos CT, Feitosa AMT, Aboim JB, Oliveira ANd, Xavier LP, Santos AS, Gonçalves EC, Filho GNdR, Nascimento LASd (2018) Lipid profile analysis of three new Amazonian cyanobacteria as potential sources of biodiesel. Fuel 234:785–788CrossRefGoogle Scholar
  78. Omar WNNW, Amin NAS (2011) Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass Bioenergy 35(3):1329–1338CrossRefGoogle Scholar
  79. Onukwuli DO, Emembolu LN, Ude CN, Aliozo SO, Menkiti MC (2016) Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt J Pet 26(1):103–110CrossRefGoogle Scholar
  80. Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA (2015) Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol 197:91–98CrossRefGoogle Scholar
  81. Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87(17–18):3490–3496CrossRefGoogle Scholar
  82. Pinzi S, Leiva-Candia D, Lopez-Garcia I, Redel-Macias MD, Dorado MP (2013) Review: latest trends in feedstocks for biodiesel production. Biofuels, Bioprod Biorefin 8(1):126–143CrossRefGoogle Scholar
  83. Pramanik K (2003) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energy 28(2):239–248CrossRefGoogle Scholar
  84. Puhan S, Vedaraman N, Ram BVB, Sankarnarayanan G, Jeychandran K (2005) Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characteristics. Biomass Bioenergy 28(1):87–93CrossRefGoogle Scholar
  85. Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84(4):335–340CrossRefGoogle Scholar
  86. Sahar Sadaf S, Iqbal J, Ullah I, Bhatti HN, Nouren S, Ur-Rehman H, Nisar J, Iqbal M (2018) Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustain Cities Soc 41:220–226CrossRefGoogle Scholar
  87. Sahoo PK, Das LM (2009) Process optimization for biodiesel production from Jatropha. Karanja and Polanga oils. Fuel 88(9):1588–1594Google Scholar
  88. Sakthivel R, Ramesh K, Purnachandran R, Shameer PM (2018) A review on the properties, performance and emission aspects of the third generation biodiesel. Renew Sust Energ Rev 82:2970–2992CrossRefGoogle Scholar
  89. Salvi BL, Panwar NL (2012) Biodiesel resources and production technologies—A review. Renew Sust Energ Rev 16(6):3680–3689CrossRefGoogle Scholar
  90. Sánchez Á, Maceiras R, Cancela Á, Pérez A (2013) Culture aspects of Isochrysis galbana for biodiesel production. Appl Energy 101:192–197CrossRefGoogle Scholar
  91. Sani YM, Daud WMAW, Abdul Aziz AR (2014) Activity of solid acid catalysts for biodiesel production: a critical review. Appl Catal A 470:140–161CrossRefGoogle Scholar
  92. Sawangkeaw R, Ngamprasertsith S (2013) A review of lipid-based biomasses as feedstocks for biofuels production. Renew Sust Energ Rev 25:97–108CrossRefGoogle Scholar
  93. Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sust Energ Rev 15:4732–4745CrossRefGoogle Scholar
  94. Shan R, Lu L, Shi Y, Yuan H, Shi J (2018) Catalysts from renewable resources for biodiesel production. Energy Convers Manag 178:277–289CrossRefGoogle Scholar
  95. Sheppard CD, Newton L, Thompson SA, Savage S (1994) A value added manure management system using the black soldier fly. Bioresour Technol 50(3):275–279CrossRefGoogle Scholar
  96. Shumaker JL, Crofcheck C, Tackett SA, Santillan-Jimenez E, Crocker M (2007) Biodiesel production from soybean oil using calcined Li-Al layered double hydroxide catalysts. Catal Lett 115(1–2):56–61CrossRefGoogle Scholar
  97. Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sust Energ Rev 14(1):200–216CrossRefGoogle Scholar
  98. Souza SP, Seabra JEA, Nogueira LAH (2017) Feedstocks for biodiesel production: brazilian and global perspectives. Biofuels 9(4):455–478CrossRefGoogle Scholar
  99. Sulaiman S, Abdul Aziz AR, Aroua MK (2013) Reactive extraction of solid coconut waste to produce biodiesel. J Taiwan Inst Chem Eng 44(2):233–238CrossRefGoogle Scholar
  100. Sunita G, Devassy BM, Vinu A, Sawant DP, Balasubramanian VV, Halligudi SB (2008) Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Communs 9(5):696–702CrossRefGoogle Scholar
  101. Talebian-Kiakalaieh A, Amin NAS, Zarei A, Noshadi I (2013) Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: optimization and kinetic model. Appl Energy 102:283–292CrossRefGoogle Scholar
  102. Tang ZE, Lim S, Pang YL, Ong HC, Lee KT (2018) Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew Sust Energ Rev 92:235–253CrossRefGoogle Scholar
  103. Ullah Z, Khan AS, Muhammad N, Ullah R, Alqahtani AS, Shah SN, Ghanem OB, Bustam MA, Man Z (2018) A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel. J Mol Liq 266:673–686CrossRefGoogle Scholar
  104. U.S. Energy Information Administration (2015) Annual energy outlook 2015: Office of integrated and international energy analysis 1:1–244.
  105. Van Gerpen J, Shanks B, Pruszko, Clements D, Knothe G (2004) Biodiesel production technology August 2002-January 2004. NREL/SR-510-36244Google Scholar
  106. Verma P, Sharma MP (2016) Review of process parameters for biodiesel production from different feedstocks. Renew Sust Energ Rev 62:1063–1071CrossRefGoogle Scholar
  107. Verma P, Dwivedi G, Sharma MP (2016a) Comprehensive analysis on potential factors of ethanol in Karanja biodiesel production and its kinetic studies. Fuel 188:586–594CrossRefGoogle Scholar
  108. Verma P, Sharma MP, Dwivedi G (2016b) Prospects of bio-based alcohols for karanja biodiesel production: an optimisation study by response surface methodology. Fuel 183:185–194CrossRefGoogle Scholar
  109. Vicente G, Martínez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92(3):297–305CrossRefGoogle Scholar
  110. Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4:15CrossRefGoogle Scholar
  111. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sust Energ Rev 18:184–193CrossRefGoogle Scholar
  112. Yang S, Liu Z (2014) Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production. Appl Energy 113:385–391CrossRefGoogle Scholar
  113. Yang S, Li Q, Gao Y, Zheng L, Liu Z (2014) Biodiesel production from swine manure via house fly larvae (Musca domestica L.). Renew Energy 66:222–227CrossRefGoogle Scholar
  114. Yusuf NNAN, Kamarudin SK, Yaakub Z (2011) Overview on the current trends in biodiesel production. Energy Convers Manag 52(7):2741–2751CrossRefGoogle Scholar
  115. Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90(6):770–777CrossRefGoogle Scholar
  116. Zhang J, Chen S, Yang R, Yan Y (2010) Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel 89(10):2939–2944CrossRefGoogle Scholar
  117. Zheng L, Li Q, Zhang J, Yu Z (2012) Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew Energy 41:75–79CrossRefGoogle Scholar
  118. Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z (2013) Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Appl Energy 101:618–621CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and MathematicsUniversiti Pendidikan Sultan IdrisTanjong MalimMalaysia

Personalised recommendations