Copper sorption on chitin and acid-washed shrimp shells from Palinurus elephas: isotherm and kinetic studies
- 13 Downloads
Abstract
The removal of toxic heavy metals species from aqueous solutions is the concern of this paper which investigates the sorption kinetics and equilibriums in the uptake of copper(II) by low-cost chitinous adsorbents prepared from Algerian shrimp (Palinurus elephas) shell waste. Acid-washed shrimp shells and chitin biosorbents resulted from the bulk treatment of the waste with 1.2 M HCl and 1 M NaOH that aims to the demineralization and the deproteinization of raw biomass. Elements analysis experiments showed that such treatments led to a significant increase in nitrogen content in the biomaterial. In fact, this finding proved that nitrogen chemical moieties (amine and acetamide) are likely the key parameters in copper(II)-binding phenomena. Maximum adsorption yields at pH 4 were found to be 16 mg g−1 for acid-washed shrimp shells and 24 mg g−1 for chitin but many times more with chitosan (about 150 mg g−1). Besides, kinetic measurements of copper(II) sorption onto the various biomaterials were fitted properly to the pseudo-second-order model and the Langmuir equation applied to the isotherms modeling.
Keywords
Adsorption Chitinous materials Copper Kinetic modelingNotes
Acknowledgements
This work is dedicated to Professor K.E. BAL and Miss S. LOUZ, who died, for their invaluable contribution in the initiation, the redaction and the experimental work.
References
- Alimuniar A, Zainuddin R (1992) An economical technique for producing chitosan. In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in chitin and chitosan. Elsevier Science Publishers, New York, pp 627–632CrossRefGoogle Scholar
- An HK, Park BY, Kim DS (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35:3551–3556. https://doi.org/10.1016/S0043-1354(01)00099-9 CrossRefGoogle Scholar
- Arifur Rahman M, Motahar Hossain M, Samad A, Shafiqul Alam AM (2012) Removal of arsenic from ground water with shrimp Shell. Dhaka Univ J Sci 60:175–180. https://doi.org/10.3329/dujs.v60i2.11489 CrossRefGoogle Scholar
- Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243. https://doi.org/10.1016/S0304-3894(02)00263-7 CrossRefGoogle Scholar
- Bal Y, Bal KE, Lallam A (2003) Removal of Bi(III) and Zn(II) by nonliving Streptomyces rimosus biomass from nitric solutions. Eur J Miner Process Environ Prot 3:42–48Google Scholar
- Bal Y, Bal KE, Larbi-Bouamrane O, Lallam A (2006) Copper(II) uptake by Pleurotus mutilus biomass, chitin and chitosan. Miner Eng 19:1456–1458. https://doi.org/10.1016/j.mineng.2006.03.005 CrossRefGoogle Scholar
- Becker T, Schlaak M, Strasdeit H (2000) Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives. React Funct Polym 44:289–298. https://doi.org/10.1016/S1381-5148(99)00104-2 CrossRefGoogle Scholar
- Bellifa A, Makhlouf M, Hechemi Boumila Z (2017) Comparative study of the adsorption of methyl orange by bentonite and activated carbon. Acta Physica Polinica A 132:466. https://doi.org/10.12693/aphyspola.132.466 CrossRefGoogle Scholar
- Boeglin JC (2002) L’adsorption. Techniques de l’ingénieur. J2, J2730Google Scholar
- Cavus S, Cakal E (2017) Poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-1-vinyl-2-pyrrolidone) hydrogel and its use in the removal of Cd(II), Pb(II) and Cu(II). Acta Physica Polinica A 132:505. https://doi.org/10.12693/APhysPolA.132.505 CrossRefGoogle Scholar
- Charoenvuttitham P, Shi J, Mittal G (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41:1135–1153. https://doi.org/10.1080/01496390600633725 CrossRefGoogle Scholar
- Chio CP, Lin MC, Liao CM (2009) Low-cost farmed shrimp shells could remove arsenic from solutions kinetically. J Hazard Mater 171:859–864. https://doi.org/10.1016/j.jhazmat.2009.06.086 CrossRefGoogle Scholar
- Ciftci H, Ersoy B, Evcin A (2017) Synthesis, characterization and Cr(VI) adsorption properties of modified magnetic nanoparticles. Acta Physica Polinica A 132:564. https://doi.org/10.12693/aphyspola.132.564 CrossRefGoogle Scholar
- Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024 CrossRefGoogle Scholar
- Ferhat M, Kadouche S, Drouiche N, Messaoudi K, Messaoudi B, Lounici H (2016) Competitive adsorption of toxic metals on bentonite and use of chitosan as flocculent coagulant to speed up the settling of generated clay suspensions. J Chemosphere 165:87–93. https://doi.org/10.1016/j.chemosphere.2016.08.125 CrossRefGoogle Scholar
- Findon A, McKay G, Blair HS (1993) Transport studies for the sorption of copper ions by chitosan. J Environ Sci Health 28:173–185. https://doi.org/10.1080/10934529309375870 Google Scholar
- Galli E, Lakhdar A (2009) Extraction et caractérisation de la chitine et du chitosane obtenu à partir de biomasses. In: Crini G, Badot P M, Guibal E (eds) Chitine et chitosane du biopolymère à l’application, Presses universitaires de Franche-Comté, pp 55–63. http://presses-UFC-fcomte.fr. Accessed 23 Sept 2016
- Guibal E, Millot C, Roussy J (1999) Molybdate sorption by cross-linked chitosan-beads: dynamic studies. Water Environ Res 71:10–17. https://doi.org/10.2175/106143099X121670 CrossRefGoogle Scholar
- Hattori T, Katai K, Kato M, Mizuta Y (1999) Colloidal titration of chitosan and critical unit of chitosan to the potentiometric colloidal titration with poly(vinyl sulfate) using toluidine blue as indicator. Bull Chem Soc Jpn 72:37–41. https://doi.org/10.1246/bcsj.72.37 CrossRefGoogle Scholar
- Huong DM, Dung NX, Luyen DV (1989) Tap Chi Khoa Hoc. J Chem 27:20Google Scholar
- Kadouche S, Lounici H, Benaoumeur K, Drouiche N, Hadioui M, Sharrock P (2012) Enhancement of sedimentation velocity of heavy metals loaded hydroxyapatite using chitosan extracted from shrimp waste. J Polym Environ 20:848–857. https://doi.org/10.1007/s10924-012-0440-7 CrossRefGoogle Scholar
- Karthikeyan G, Anbalagan K, Muthulakshmi Andal N (2004) Adsorption dynamics and equilibrium studies of Zn(II) onto chitosan. J Chem Sci 116:119–127. https://doi.org/10.1007/bf02708205 CrossRefGoogle Scholar
- Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J Hazard Mater 161:231–240. https://doi.org/10.1016/j.jhazmat.2008.03.076 CrossRefGoogle Scholar
- Marques Neto JO, Bellato CR, Milagres JL, Pessoa KD, de Alvarenga ES (2013) Preparation and evaluation of chitosan beads immobilized with iron(III) for the removal of As(III) and As(V) from water. J Braz Chem Soc 24:121–132. https://doi.org/10.1590/S0103-50532013000100017 CrossRefGoogle Scholar
- Nigiz FU, Unlu D, Hilmioglu N (2017) Carbon black loaded composite poly(dimethyl siloxane) membrane preparation and application for hazardous chemical removal from water. Acta Physica Polinica A 132:693. https://doi.org/10.12693/APhysPolA.132.693 CrossRefGoogle Scholar
- Onundi YB, Mamun AA, Al Khatib MF, Ahmed YM (2010) Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Technol 7:751–758. https://doi.org/10.1007/bf03326184 CrossRefGoogle Scholar
- Piron E, Domard A (1998) Interaction between chitosan and uranyl ions. Part 2. Mechanism of interaction. Int J Biol Macromol 22:33–40. https://doi.org/10.1021/la960765d CrossRefGoogle Scholar
- Rinaudo M, Milas M, Le Dung P (1993) Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int J Biol Macromol 15:281–285. https://doi.org/10.1016/0141-8130(93)90027-J CrossRefGoogle Scholar
- Roberts GAF, Domszy JG (1982) Determination of viscometric constants for chitosan. Int J Macromol 4:374–379. https://doi.org/10.1016/0141-8130(82)90074-5 CrossRefGoogle Scholar
- Shabah CP, Singh C, Mishra S, Pandit GG, Kumar M, Bajaj PN (2012) Study of extraction of Co (II) ions using the synthesized polyacrylonitrile-manganese dioxide composite beads. Sep Sci Technol 47:1177–1184. https://doi.org/10.1080/01496395.2011.644617 CrossRefGoogle Scholar
- Tay CC, Liew HH, Yong SK, Surif S, Redzwan G, Abdul-Talib S (2012) Cu(II) removal onto fungal derived biosorbents: biosorption performance and the half saturation constant concentration approach. Int J Res Chem Environ 2:138–143. https://doi.org/10.13140/2.1.4633.1208 Google Scholar
- Van Toan Nguyen (2009) Production of chitin and chitosan from partially autolyzed shrimp shell materials. Open Biomater J 1:21–24. https://doi.org/10.2174/1876502500901010021 CrossRefGoogle Scholar
- Vijayaraghavan K, Palanivelu K, Velan M (2005) Crab shell-based biosorption technology for treatment of nickel-bearing electroplating industrial effluents. J Hazard Mater 119:251–254. https://doi.org/10.1016/j.jhazmat.2004.12.017 CrossRefGoogle Scholar
- Wang X, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26. https://doi.org/10.1016/j.carbpol.2003.11.007 CrossRefGoogle Scholar
- Wantanaphong J, Mooney SJ, Bailey EH (2005) Natural and waste materials as metal sorbents in permeable reactive barriers (PRBs). Environ Chem Lett 3:19–23. https://doi.org/10.1007/s10311-005-0106-y CrossRefGoogle Scholar
- Xiong C (2010) Adsorption of cadmium(II) by chitin. J Chem Sos Pak 32:429–435Google Scholar