Advertisement

Influence of natural additions on the physicochemical characteristics of cemented radioactive resins

  • Z. FaizEmail author
  • S. Fakhi
  • A. Bouih
  • H. El Hadi
Original Paper
  • 17 Downloads

Abstract

The study aims to perform the immobilization/stabilization process quality of ions exchange resins by cementation. For this purpose, three natural and local materials were tested as additions: (1) limestone, (2) marly clay and (3) marly limestone. After characterization of these additions, mainly by X-ray diffraction, the experimental study was initiated by the preparation of cemented packages according to two formulations. The first was carried out without addition and the second with addition. The second stage of the work was focused on studying the additions effects on the physicochemical properties and the mechanical behavior of the cemented resins packages. The obtained results showed that additions improve significantly the mechanical strength and the physicochemical properties of the studied packages. Local marly clay, rich in kaolinite and free silica, has made it possible, as a natural addition, to prepare the most efficient cemented resins packages.

Keywords

Cement Portland Mechanical properties Natural additions radioactive waste X-ray diffraction Waste management 

Notes

Acknowledgements

This work was conducted within the ≪Unité Mixte de Recherche UMR≫ network between the National Centre of Science, Technology and Energy Nuclear (CNESTEN) and the University Hassan II of Casablanca (UH2C).

References

  1. Abdelaziz GE, Abdelalim AMK, Ghorab HY, Elsayed MS (2010) Characterization of OPC matrix containing dealuminated kaolin. Concr Res Lett 1(4):131–141Google Scholar
  2. Al-Wakeel EI, El-Korashy SA (1996) Reaction mechanism of the hydrothermally treated CaO–SiO2–Al2O3 and CaO–SiO2–Al2 O3–CaSO4 systems. J Mater Sci 31(7):1909–1913CrossRefGoogle Scholar
  3. Benachour Y, Davy CA, Skoczylas F, Houari H (2008) Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cem Concr Res 38(6):727–736CrossRefGoogle Scholar
  4. Bertolini L, Carsana M, Cassago D, Curzio AQ, Collepardi M (2004) MSWI ashes as mineral additions in concrete. Cem Concr Res 34(10):1899–1906CrossRefGoogle Scholar
  5. Bessa-Badreddin A (2004) Etude de la contribution des additions minérales aux propriétés physiques, mécaniques et de durabilité des mortiers. Dissertation Cergy-PontoiseGoogle Scholar
  6. Bouguerra A, Ledhem A, De Barquin F, Dheilly RM, Queneudec M (1998) Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates. Cem Concr Res 28(8):1179–1190CrossRefGoogle Scholar
  7. Cabrera JG, Claisse PA (1990) Measurement of chloride penetration into silica fume concrete. Cem Concr Compos 12(3):157–161CrossRefGoogle Scholar
  8. Coumes CCD, Courtois S (2003) Cementation of a low-level radioactive waste of complex chemistry investigation of the combined action of borate, chloride, sulfate and phosphate on cement hydration using response surface methodology. Cem Concr Res 33:305–316CrossRefGoogle Scholar
  9. Dembovska L, Bajare D, Pundiene I, Vitola L (2017) Effect of pozzolanic additives on the strength development of high performance concrete. Proc Eng 172:202–210CrossRefGoogle Scholar
  10. El-Dakroury A, Gasser MS (2008) Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures. J Nucl Mater 381(3):271–277CrossRefGoogle Scholar
  11. Faiz Z, Bouih A, Fakhi S, Laissaoui A, Hannache H, Idrissi A (2015) Improvement of conditions for the radioactive ion exchange resin immobilization in the cement Portland. J Mater Environ Sci 6:289–296Google Scholar
  12. Faiz Z, Fakhi S, Bouih A, Outayad R, Benkdad A, Hannache H (2017) Leaching study of cesium from spent ion-exchange resins and Portland cement package. Int J Environ Sci Technol 14(5):1019–1026CrossRefGoogle Scholar
  13. Gaweska I (2004) Thermal behavior of high performance concretes at high temperature-evolution of mechanical properties. Doctoral dissertation Ecole des Ponts Paris TechGoogle Scholar
  14. Hedley CB, Yuan G, Theng B (2007) Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl Clay Sci 35(3–4):180–188CrossRefGoogle Scholar
  15. Hong SY, lasser FP (1999) Alkali binding in cement pastes Part I the C–S–H phase. Cem Concr Res 2:1893–1909CrossRefGoogle Scholar
  16. Horkoss S, Escadeillas G, Rizk T, Lteif R (2015) The effect of the source of cement SO3 on the expansion of mortars. Case Stud Constr Mater 4:62–72.  https://doi.org/10.1016/j.cscm.2015.12.004 CrossRefGoogle Scholar
  17. Huan Z, Chang J (2008) Study on physicochemical properties and in vitro bioactivity of tricalcium silicate–calcium carbonate composite bone cement. J Mater Sci Mater Med 19(8):2913–2918CrossRefGoogle Scholar
  18. IAEA (2001) Technical reports series No. 402, Handling and processing of radioactive waste from nuclear applications, pp 115–118Google Scholar
  19. IAEA (2002) Technical Reports Series No. 408, Applications of ions exchange processes for de treatment of radioactive waste and management of spent ion exchanges, pp 66–87Google Scholar
  20. Jemai I, Aissa NB, Guirat SB, Ben-Hammouda M, Gallali T (2013) Impact of three and seven years of no-tillage on the soil water storage, in the plant root zone, under a dry subhumid Tunisian climate. Soil Tillage Res 126:26–33CrossRefGoogle Scholar
  21. Junak J, Junakova N (2018) Concrete based on full natural aggregate replacement by glass household waste. In: IOP conference series: materials science and engineering, vol 385, No. 1. IOP Publishing, p 012022Google Scholar
  22. Junfeng L et al (2006) Advances in cement solidification technology for waste radioactive ion exchange resins: a review. J Hazard Mater B135:443–448Google Scholar
  23. Kelham S (1999) Influence of cement composition on volume stability of mortar. Spec Publ 177:27–46Google Scholar
  24. Kosakowski G, Berner U (2013) The evolution of clay rock/cement interfaces in a cementitious repository for low-and intermediate level radioactive waste. Phys Chem Earth Parts A/B/C 64:65–86CrossRefGoogle Scholar
  25. Kulik DA (2011) Improving the structural consistency of CSH solid solution thermodynamic models. Cem Concr Res 41(5):477–495CrossRefGoogle Scholar
  26. Lamond JF, Pielert JH (2006) Significance of tests and properties of concrete and concrete-making materials. ASTM, West ConshohockenCrossRefGoogle Scholar
  27. Li X, Xu W, WangS Tang M, Shen X (2014) Effect of SO3 and MgO on Portland cement clinker: formation of clinker phases and alite polymorphism. Constr Build Mater 58:182–192CrossRefGoogle Scholar
  28. Liu DHF, Liptak BG (1999) Hazardous waste and solid. CRC Press, Boca RatonGoogle Scholar
  29. Londono SC, Williams LB (2016) Unraveling the antibacterial mode of action of a clay from the Colombian Amazon. Environ Geochem Health 38(2):363–379CrossRefGoogle Scholar
  30. Lothenbach B, Nied D, Achiedo G, Dauzères A (2015) Magnesium and calcium silicate hydrates. Cem Concr Res 77:60–68CrossRefGoogle Scholar
  31. Michael WR, Alois F (2002) Paleoenvironmental and diagenetic implications of δ18O and δ13C isotope ratios from the Upper Jurassic Plassen limestone (Northern Calcareous Alps, Austria). Geobios 35:41–49CrossRefGoogle Scholar
  32. Michel F, Pierard J, Courard L, Pollet V (2007) Influence of physic-chemical characteristics of limestone fillers on fresh and hardened mortar performances. In: Proceedings of 5th international RILEM symposium on SCC. Ghent, Belgium, pp 205–210Google Scholar
  33. Mikutta R, Kleber M, Kaiser K, Jahn R (2005) Review. Soil Sci Soc Am J 69(1):120–135CrossRefGoogle Scholar
  34. Miller WM, Chapman N, McKinley I, Alexander R, Smellie JAT (2011) Natural analogue studies in the geological disposal of radioactive wastes, vol 57. Elsevier, AmsterdamGoogle Scholar
  35. Muller ACA, Scrivener KL, Skibsted J, Gajewicz AM, McDonald PJ (2015) Influence of silica fume on the microstructure of cement pastes: new insights from 1 H NMR relaxometry. Cem Concr Res 74:116–125CrossRefGoogle Scholar
  36. Niebuhr B (2005) Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl–limestone rhythmites (Lehrte West Syncline, northern Germany). Geol Mag 142(1):31–55CrossRefGoogle Scholar
  37. Nonat A (2004) The structure and stoichiometry of CSH. Cem Concr Res 34(9):1521–1528CrossRefGoogle Scholar
  38. Ollivier JP, Baron J (1997) Les bétons: bases et données pour leur formulation. Eyrolles, ParisGoogle Scholar
  39. Osmanlioglu AE (2002) Immobilization of radioactive waste by cementation with purified kaolin clay. Waste Manag 22(5):481–483CrossRefGoogle Scholar
  40. Pansu M, Gautheyrou J (2007) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, BerlinGoogle Scholar
  41. Pellenq RM, Lequeux N, Van Damme H (2008) Engineering the bonding scheme in C–S–H: the iono-covalent framework. Cem Concr Res 38(2):159–174CrossRefGoogle Scholar
  42. Pera J, Husson S, Guilhot B (1999) Influence of finely ground limestone on cement hydration. Cem Concr Compos 21(2):99–105CrossRefGoogle Scholar
  43. Pohl WL (2011) Economic geology: principles and practice. Wiley, New York, p 305CrossRefGoogle Scholar
  44. Rahmouni Z, Belouadah M, Tebbal N (2012) Influence des additions minérales sur les propriétés à l’état durci des bétons ordinaires à base de matériaux locaux. XXXe Rencontres AUGC-IBPSA Chambéry, SavoieGoogle Scholar
  45. Ríos CA, Williams CD, Fullen MA (2017) Heavy Metal Removal Using Alkali Activated Kaolinite in the Cao-Al2 O3-Sio2-H2 O System. Mater Sci Eng Int J 1(4):00019.  https://doi.org/10.15406/mseij.2017.01.00019 Google Scholar
  46. Sakr K, Sayed M, Hafez M (2003) Immobilization of radioactive waste in mixture of cement, clay and polymer. J Radioanal Nucl Chem 256(2):179–184CrossRefGoogle Scholar
  47. Tang Y, Dun Y, Miao Y, Zhao X, Zuo Y (2017) Influence of the CSH amount on [Cl]/[OH] ratio of simulated concrete SPS and the corrosion susceptibility of steel. J Wuhan Univ Technol Mater. Sci. Ed. 32(2):430–436CrossRefGoogle Scholar
  48. Toropovs N, Bajare D, Sahmenko G, Krage L, Korjakins A (2014) The formation of microstructure in high strength concrete containing micro and nanosilica. Key Eng Mater 604:83–86CrossRefGoogle Scholar
  49. Wekesa M, Uddin MJ, Conde P, Singh P (2014) Acid cleaning of corrosive kraft digesters and evaporators. Univers J Chem 2(1):6–10Google Scholar
  50. Zarnic R, BokanBosiljkov V, Giacomelli M (2007) Safety evaluation methodology of engineering barriers at repository for low and intermediate level radioactive waste. In: Proceedings of the international conference nuclear energy for New Europe. SloveniaGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Laboratory of Engineering and Materials (LIMAT), Faculty of Sciences Ben M’sikUniversity Hassan 2 of CasablancaCasablancaMorocco
  2. 2.Laboratory of Applied Mathematics and Technologies of Information and Communication, MATIC, Polydisciplinary Faculty of KhouribgaSultan Moulay Slimane UniversityKhouribgaMorocco
  3. 3.National Center of Sciences, Technology and Nuclear Energy (CNESTN), Center for Nuclear Studies-Maamoura (CENM)RabatMorocco

Personalised recommendations