Advertisement

Prediction of water quality parameters using evolutionary computing-based formulations

  • M. NajafzadehEmail author
  • A. Ghaemi
  • S. Emamgholizadeh
Original Paper

Abstract

Rivers, as one of the crucial components of water resources, play a substantial role in human life. Due to a wide range of water consumptions, water quality is emphatically recommended assigning at a permissible level. Enormous field investigations have been carried out to quantify indicators of water quality parameters which have a great impact on the water quality. In this way, there are not explicit equations to predict WQPs with an allowable degree of accuracy. In the present work, gene expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT) have been employed to estimate three indices including biochemical oxygen demand (BOD), dissolved oxygen, and chemical oxygen demand (COD). To develop the proposed models, nine input parameters \({\text{Ca}}^{2 + }\), \({\text{Na}}^{ + }\), \({\text{Mg}}^{2 + }\), \({\text{NO}}_{2}^{ - }\), \({\text{NO}}_{3}^{ - }\), \({\text{PO}}_{4}^{3 - }\), \({\text{EC}}\), \({\text{PH}}\), and \({\text{turbidity}}\) were selected as effective variables. Results of training and testing stages for these approaches have been investigated. Performance of the models indicated that the relative superiority of the EPR approach compared to the GEP and MT models. Gamma test was applied to determine important parameters for predicting BOD, COD, and COD indices. It was found that \({\text{PO}}_{4}^{3 - }\), \({\text{Ca}}^{2 + }\), and pH have the most significant effect on BOD, COD, and COD, respectively.

Keywords

Water quality parameters River Evolutionary polynomial regression Gene expression programming Model tree Gamma test 

Notes

Acknowledgments

The authors wish to thank all who assisted in conducting this work.

Supplementary material

13762_2018_2049_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 65 kb)

References

  1. Avila R, Horn B, Moriaty E, Hodson R, Moltchanova E (2018) Evaluating statistical model performance in water quality prediction. J Environ Manag 206:910–919CrossRefGoogle Scholar
  2. Ay M, Kisi O (2012) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J Environ Eng 138(6):654–662CrossRefGoogle Scholar
  3. Agalbjorn S, Koncar N, Jones AJ (1997) A note on the gamma test. Neural Comput Appl 5(3):131–133CrossRefGoogle Scholar
  4. Barca E, Berardi L, Laucelli DB, Passarella G, Giustolisi O (2015) Evolutionary polynomial regression application for missing data handling in meteo-climatic gauging stations. Università degli studi di Bergamo. GRASPA WORKING PAPERS, pp 1–4Google Scholar
  5. Basant N, Gupta S, Malik A, Singh KP (2010) Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study. Chemom Intell Lab Syst 104(2):172–180CrossRefGoogle Scholar
  6. Bozorg-Haddad O, Soleimani S, Loáiciga HA (2017) Modeling water-quality parameters using genetic algorithm-least squares support vector regression and genetic programming. J Environ Eng 143(7):04017021CrossRefGoogle Scholar
  7. Carbone M, Berardi L, Laucelli D, Piro P (2012) Data-mining approach to investigate sedimentation features in combined sewer overflows. J Hydroinf 14(3):613–627CrossRefGoogle Scholar
  8. Chaves P, Kojiri T (2007) Conceptual fuzzy neural network model for water quality simulation. Hydrol Process 21:634–646CrossRefGoogle Scholar
  9. Cox BA (2003) A review of dissolve oxygen modeling techniques for lowland rivers. The Sci Total Environ 314–316:303–334CrossRefGoogle Scholar
  10. Creaco E, Berardi L, Sun S, Giustolisi O, Savic D (2016) Selection of relevant input variables in storm water quality modeling by multiobjective evolutionary polynomial regression paradigm. Water Resour Res 52:2403–2419CrossRefGoogle Scholar
  11. Diamantopoulou MJ, Papamichail DM, Antonopoulos VZ (2005) The use of a neural network technique for the prediction of water quality parameters. Oper Res Int J 5(1):115–125CrossRefGoogle Scholar
  12. Dogan E, Sengorur B, Koklu R (2009) Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manag 90(2):1229–1235CrossRefGoogle Scholar
  13. Ebtehaj I, Bonakdari H, Zaji AH, Azimi H, Sharifi A (2015) Gene expression programming to predict the discharge coefficient in rectangular side weirs. Appl Soft Comput 35:618–628CrossRefGoogle Scholar
  14. Emamgholizadeh S, Kashi H, Marofpoor I, Zalaghi E (2014) Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int J Environ Sci Technol 11(3):645–656CrossRefGoogle Scholar
  15. Etemad-Shahidi A, Taghipour M (2012) Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree. J Hydraul Eng ASCE 138(6):542–554CrossRefGoogle Scholar
  16. Etemad-Shahidi A, Ghaemi N (2011) Model tree approach for prediction of pile groups scour due to waves. Ocean Eng 38:1522–1527CrossRefGoogle Scholar
  17. Falconer RA, Liu S (1995) Mathematical modeling of water quality processes using higher-order accurate schemes. Environ Int 21(2):111–122CrossRefGoogle Scholar
  18. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129Google Scholar
  19. Ferreira C (2002) Gene expression programming in problem solving. In: Roy R, Köppen M, Ovaska S, Furuhashi T, Hoffmann F (eds) Soft computing and industry. Springer, Berlin, pp 635–653CrossRefGoogle Scholar
  20. Faruk DO (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23:586–594CrossRefGoogle Scholar
  21. Gandomi AH, Babanajad SK, Alavi AH, Farnam Y (2012) Novel approach to strength modeling of concrete under triaxial compression. J Mater Civ Eng 24(9):1132–1143CrossRefGoogle Scholar
  22. Gandomi AH, Alavi AH, Gandomi M, Kazemi S (2017) Formulation of shear strength of slender RC beams using gene expression programming, part II: with shear reinforcement. Measurement 95:367–376CrossRefGoogle Scholar
  23. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF (2012) Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar Pollut Bull 64:2409–2420CrossRefGoogle Scholar
  24. Ghavidel SZZ, Montaseri M (2014) Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin. Stoch Environ Res Risk Assess 28(8):2101–2118CrossRefGoogle Scholar
  25. Giustolisi O, Savic DA (2006) A symbolic data-driven technique based on evolutionary polynomial regression. J Hydroinf IWA 8(3):207–222CrossRefGoogle Scholar
  26. Giustolisi O, Savic DA (2009) Advances in data-driven analyses and modelling using EPR-MOGA. J Hydroinf 11(3–4):225–236CrossRefGoogle Scholar
  27. Gray AV, Li W (1999) Case study on water quality modeling of Dianchi lake, Yunnan province, Sout West China. Water Sci Technol 40(2):35–43CrossRefGoogle Scholar
  28. Hameed M, Sharqi SS, Yaseen ZM, Afan HA, Hussain A, Elshafie A (2017) Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia. Neural Comput Appl 28(1):893–905CrossRefGoogle Scholar
  29. Heddam S, Kisi O (2018) Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol 559:499–509CrossRefGoogle Scholar
  30. Khan M, Tufail M, Azamathulla HM, Ahmad I, Muhammad N (2018) Genetic functions-based modelling for pier scour depth prediction in coarse bed streams. Paper presented at the Proceedings of the Institution of Civil Engineers-Water ManagementGoogle Scholar
  31. Kisi O, Akbari N, Sanatipour M, Hashemi A, Teimourzadeh K, Shiri J (2013) Modeling of dissolved oxygen in river water using artificial intelligence techniques. J Environ Inf 22(2):92–101CrossRefGoogle Scholar
  32. Kisi O, Keshavarzi A, Shiri J, Zounemat-Kermani M, Omran E-SE (2017) Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrol Res 48(6):1508–1519CrossRefGoogle Scholar
  33. Koncar N (1997) Optimisation methodologies for direct inverse neurocontrol, Ph.D. thesis. Department of Computing, Imperial College of Science, Technology and Medicine, University of LondonGoogle Scholar
  34. Laucelli D, Giustolisi O (2011) Scour depth modelling by a multi-objective evolutionary paradigm. Environ Model Softw 26(4):498–509CrossRefGoogle Scholar
  35. Laucelli D, Romano M, Savić D, Giustolisi O (2016) Detecting anomalies in water distribution networks using EPR modelling paradigm. J Hydroinf 18(3):409–427CrossRefGoogle Scholar
  36. Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRefGoogle Scholar
  37. Mannina G, Viviani G (2010) Water quality modeling for ephemeral rivers: model development and parameter assessment. J Hydrol 393(3–4):186–196CrossRefGoogle Scholar
  38. Martí P, Shiri J, Duran-Ros M, Arbat G, De Cartagena FR, Puig-Bargués J (2013) Artificial neural networks vs. gene expression programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents. Comput Electron Agric 99:176–185CrossRefGoogle Scholar
  39. Najah A, Elshafie A, Karim OA, Jaffar O (2009) Prediction of Johor River water quality parameters using artificial neural networks. Eur J Sci Res 28(3):422–435Google Scholar
  40. Nguyen TT, Keupers I, Willems P (2018) Conceptual river water quality model with flexible model structure. Environ Model Softw 104:102–117CrossRefGoogle Scholar
  41. Noori R, Karbassi A, Sabahi MS (2010) Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. J Environ Manag 91(3):767–771CrossRefGoogle Scholar
  42. Noori R, Karbassi A, Moghaddamnia A, Han D, Zokaei-Ashtiani M, Farokhnia A, Gousheh MG (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J Hydrol 401(3):177–189CrossRefGoogle Scholar
  43. Orouji H, Bozorg Haddad O, Fallah-Mehdipour E, Mariño M (2013) Modeling of water quality parameters using data-driven models. J Environ Eng 139(7):947–957CrossRefGoogle Scholar
  44. Pal M, Singh NK, Tiwari NK (2012) M5 model tree for pier scour prediction using field dataset. KSCE J Civ Eng 16(6):1079–1084CrossRefGoogle Scholar
  45. Paliwal R, Sharma P, Kansal A (2007) Water quality modeling of the river Yamuna (India) using QUAL2E-UNCAS. J Environ Manag 83(2):131–144CrossRefGoogle Scholar
  46. Park SS, Lee YS (2002) A water quality modeling study of the Nakdong River, Korea. Ecol Model 152(1):65–75CrossRefGoogle Scholar
  47. Quinlan JR (1992) Learning with continuous classes. In: Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence. World Scientific, pp 343–348Google Scholar
  48. Rajaee T, Shahabi A (2016) Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters. Arab J Geosci 9(3):176CrossRefGoogle Scholar
  49. Ravansalar M, Rajaee T (2015) Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environ Monit Assess 187(6):366.  https://doi.org/10.1007/s10661-015-4590-7 CrossRefGoogle Scholar
  50. Ravansalar M, Rajaee T, Zounemat-Kermani M (2016a) A wavelet–linear genetic programming model for sodium (Na+) concentration forecasting in rivers. J Hydrol 537:398–407CrossRefGoogle Scholar
  51. Ravansalar M, Rajaee T, Ergil M (2016b) Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform. J Exp Theor Artif Intell 28(4):689–706CrossRefGoogle Scholar
  52. Remesan R, Shamim M, Han D (2008) Model data selection using gamma test for daily solar radiation estimation. Hydrol Process 22(21):4301–4309CrossRefGoogle Scholar
  53. Rezaei-Balf MR, Noori R, Berndtsson R, Ghaemi A, Ghiasi B (2018) Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers. J Water Supply Res Technol-Aqua 67:447–457Google Scholar
  54. Roushangar K, Mehrabani FV, Shiri J (2014) Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs). J Hydrol 514:114–122CrossRefGoogle Scholar
  55. Savic D, Giustolisi O, Laucelli D (2009) Asset deterioration analysis using multi-utility data and multi-objective data mining. J Hydroinf 11(3–4):211–224CrossRefGoogle Scholar
  56. Shiri J, Marti P, Singh VP (2014) Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning. Hydrol Process 28(3):1215–1225CrossRefGoogle Scholar
  57. Shiri J, Keshavarzi A, Kisi O, Karimi S (2017) Using soil easily measured parameters for estimating soil water capacity: soft computing approaches. Comput Electron Agric 141:327–339CrossRefGoogle Scholar
  58. Šiljić A, Antanasijević D, Perić-Grujić A, Ristić M, Pocajt V (2015) Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations. Environ Sci Pollut Res 22(6):4230–4241CrossRefGoogle Scholar
  59. Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality-a case study. Ecol Model 220(6):888–895CrossRefGoogle Scholar
  60. Soltani F, Kerachian R, Shirangi E (2010) Developing operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate models. Expert Syst Appl 37(9):6639–6645CrossRefGoogle Scholar
  61. Soyupak S, Karaer F, Gürbüz H, Kivrak E, Sentürk E, Yazici A (2003) A neural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Comput Appl 12(3–4):166–172CrossRefGoogle Scholar
  62. Tomić ANŠ, Antanasijević DZ, Ristić MĐ, Perić-Grujić AA, Pocajt VV (2016) Modeling the BOD of Danube River in Serbia using spatial, temporal, and input variables optimized artificial neural network models. Environ Monit Assess 188(5):300CrossRefGoogle Scholar
  63. Verma A, Singh T (2013) Prediction of water quality from simple field parameters. Environ Earth Sci 69(3):821–829CrossRefGoogle Scholar
  64. Zhao L, Li Y, Zou R, He B, Zhu X, Liu Y, Wang J, Zhu Y (2013) A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China). Environ Pollut 177:13–21CrossRefGoogle Scholar
  65. Wang Y, Witten IH (1997). Induction of model trees for predicting continuous classes. In: Proceedings of the Poster Papers of the European conference on machine learning. University of Economics, Faculty of Informatics and Statistics, PragueGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Department of Water Engineering, Faculty of Civil and Surveying EngineeringGraduate University of Advanced TechnologyKermanIran
  2. 2.Department of Water and Soil EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations