Application of metallurgical slag to treat geothermal wastewater with high concentrations of arsenic and boron

  • B. M. Mercado-Borrayo
  • M. Solís-López
  • R. Schouwenaars
  • R. M. Ramírez-ZamoraEmail author
Original Paper


The reuse of geothermal wastewater for irrigation is an attractive alternative for supplying water demand in agriculture, due to the high volumes generated in geothermal plants. This application is limited by the presence of toxic semimetals such as arsenic and boron, which generally require high-cost commercial adsorbents for removal. This work studies the removal mechanism and process optimization of arsenic and boron, present in high concentrations in synthetic solutions and in geothermal wastewater, using metallurgical slags. The effect of pH, initial concentration of arsenic and boron and slag dose were investigated using a 33 factorial experimental design and response surface method to optimize the operating conditions of the removal of pollutants. Scanning electron microscope analysis showed that the removal mechanism consisted in a dissolution–precipitation reaction rather than adsorption. The effluent produced from wastewater at the optimal operating conditions in a two-step process meets the criteria proposed for both metalloids by the US Environmental Protection Agency for water used for irrigation.


Agricultural irrigation Chemical precipitation Metals removal Wastewater reuse 



B. Mercado-Borrayo thanks Coordinación de Estudios de Posgrado, UNAM for her PhD grant. M. Solís-López acknowledges support from Dirección General de Asuntos del Personal Académico, UNAM, for her postdoctoral grant. The project was supported by grants from the same organization under projects IV100616 and IT114511 as well as funds from Instituto de Ingeniería, UNAM.


  1. Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171:956–972CrossRefGoogle Scholar
  2. Ayers RS, Westcot DW (1994) Water quality for agricultures. Food and Agriculture Organization, RomeGoogle Scholar
  3. Bothe JJV, Brown PW (1999) The stabilities of calcium arsenates at 23° ± 1°C. J Hazard Mater B69:197–207CrossRefGoogle Scholar
  4. Cengeloglu Y, Tor A, Arslan G, Ersoz M, Gezgin S (2007) Removal of boron from aqueous solutions by using neutralized red mud. J Hazard Mater 21:415–422Google Scholar
  5. Chillón AMF, Valero BL, Prats RD, Varó GP (2011) Approximate cost of the elimination of boron in desalinated water by reverse osmosis and ion exchange resins. Desalination 273:421–427CrossRefGoogle Scholar
  6. Chimenos JM, Fernández AI, Villalba G, Segarra M, Urruticoechea A, Artaza B, Espiell F (2003) Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product. Water Res 37:1601–1607CrossRefGoogle Scholar
  7. Finster M, Clark C, Schroeder J, Martino L (2015) Geothermal produced fluids: characteristics, treatment technologies, and management options. Renew Sustain Energy Rev 50:952–966CrossRefGoogle Scholar
  8. Fuente GSM, Muñoz CE (2009) Boron removal by means of adsorption processes with magnesium oxide-modelization and mechanism. Desalination 249:626–634CrossRefGoogle Scholar
  9. Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321CrossRefGoogle Scholar
  10. Goldstein J, Newbury DE, Echlin P, Joy DC, Romig AD Jr, Lyman CE, Fiori C, Lifshin E (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer, LondonGoogle Scholar
  11. González-Partida E, Carrillo-Chávez A, Levresse G, Tello-Hinojosa E, Venegas-Salgado S, Ramírez-Silva G, Pal-Verma M, Tritlla J, Camprubi A (2005) Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central México. Appl Geochem 20:23–39CrossRefGoogle Scholar
  12. Guan XH, Ma J, Dong HR, Jiang L (2009) Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO4–Fe(II) process. Water Res 43:5119–5128CrossRefGoogle Scholar
  13. Güler E, Kaya C, Kabay N, Arda M (2015) Boron removal from seawater: state-of-the-art review. Desalination 356:85–93CrossRefGoogle Scholar
  14. Gupta VK, Suhas S (2009) Application of low-cost adsorbents for dye removal: a review. J Environ Manage 90:2313–2342CrossRefGoogle Scholar
  15. Hiriart G, Gutiérrez-Negrín LCA (2003) Main aspects of geothermal energy in Mexico. Geothermics 32:296–389CrossRefGoogle Scholar
  16. Ilahi SS, Ali CS (2017) Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Saf Environ Prot 111:592–626CrossRefGoogle Scholar
  17. Kabay N, Köseoglu P, Yapici D, Yüksel Ü, Yüksel M (2013) Coupling ion exchange with ultrafiltration for boron removal from geothermal water-investigation of process parameters and recycle tests. Desalination 316:17–22CrossRefGoogle Scholar
  18. Kalel AN, Rahin MYA, Krishna LS, Abdul MZ, Salmiati S (2017) High concentration arsenic removal from aqueous solution using nano-iron enrich material (NIIEM) super adsorbent. Chem Eng J 317:343–355CrossRefGoogle Scholar
  19. Kan TA, Fu G, Tomson MB (2005) Adsorption and precipitation of an aminoalkylphosphonate onto calcite. J Colloid Interface Sci 281:275–284CrossRefGoogle Scholar
  20. Kashiwakura S, Kubo H, Kumagai Y, Hiroshi K, Kazuyo MY, Nakajima K, Nagasaka T (2009) Removal of boron from coal fly ash by washing with HCl solution. Fuel 88(7):1245–1250CrossRefGoogle Scholar
  21. Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z (2007) Properties and hydration of blended cements with steelmaking slag. Cem Concr Res 37:815–822CrossRefGoogle Scholar
  22. Lee JM, Kim JH, Chang YY, Chang YS (2009) Steel dust catalysis for Fenton-like of polychlorinated dibenzo-p-dioxins. J Hazard Mater 163:222–230CrossRefGoogle Scholar
  23. Li Y, Wang J, Luan Z, Liang Z (2010) Arsenic removal from aqueous solution using ferrous based red mud sludge. J Hazard Mater 177:131–137CrossRefGoogle Scholar
  24. Liu G, Dong X, Liu L, Wu L, Peng S, Jiang C (2014) Boron deficiency is correlated with changes in cell wall structure that lead to growth defects in the leaves of navel orange plants. Sci Hortic 176:54–62CrossRefGoogle Scholar
  25. Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2009) Arsenic adsorption onto hematite and goethite. C R Chimie 12(876):881Google Scholar
  26. Mercado-Borrayo BM, Schouwenaars R, González-Chávez JL, Ramírez-Zamora RM (2013) Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:887–895CrossRefGoogle Scholar
  27. Mercado-Borrayo BM, Schouwenaars R, Litter MI, Montoya-Bautista CV, Ramírez Zamora RM (2014) Chapter 5: Metallurgical slags as an efficient and economical adsorbent of arsenic. Water reclamation and sustainability. Elsevier, New YorkGoogle Scholar
  28. Mercado-Borrayo BM, González-Chávez JL, Ramírez-Zamora RM, Schouwenaars R (2018a) Valorization of metallurgical slag for the treatment of water pollution: an emerging technology for resource conservation and re-utilization. J Sustain Metall 4:50–67CrossRefGoogle Scholar
  29. Mercado-Borrayo BM, Contreras R, Sánchez A, Font X, Schouwenaars R, Ramírez-Zamora RM (2018b) Optimisation of the removal conditions for heavy metals from water: a comparison between steel furnace slag and CeO2 nanoparticles. Arab J Chem. Google Scholar
  30. Modificación de la Norma Oficial Mexicana NOM-127-SSA1 (1994) Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Accessed 22 June 2018
  31. Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents: a critical review. J Hazard Mater 142:1–53CrossRefGoogle Scholar
  32. Mombelli D, Mapelli C, Barella S, Di Cecca C, Le Saout G, Garcia-Diaz E (2016) The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J Environ Chem Eng 4:1050–1060CrossRefGoogle Scholar
  33. Moss SA, Nagpal NP (2003) Ambient water quality guidelines for boron. Ministry of Environment, QuebecGoogle Scholar
  34. Newton AC (2016) Exploitation of diversity within crops: the key to disease tolerance? Front Plant Sci 7:665CrossRefGoogle Scholar
  35. Norma Oficial Mexicana NOM-052-SEMARNAT (2005) Que establece las características, el procedimiento de identificación, clasificación y los listados de los residuos peligrosos. México. Accessed 22 June 2018
  36. Oguz E (2005) Thermodynamic and kinetic investigations of PO4 3− adsorption on blast furnace slag. J Colloid Interface Sci 281:62–67CrossRefGoogle Scholar
  37. Petousi I, Fountoulakis MS, Saru ML, Nikolaidis N, Fletcher L, Stentiford EI, Manios T (2015) Effects of reclaimed wastewater irrigation on olive (Olea europaea ‘Koroneiki’) trees. Agric Water Manag 160:33–40CrossRefGoogle Scholar
  38. Piatak NM, Parsons MB, Seal R (2015) Characteristics and environmental aspects of slag: a review. Appl Geochem 57:236–266CrossRefGoogle Scholar
  39. Polat H, Vengosh A, Pankratov I, Polat M (2004) A new methodology for removal of boron from water by coal and fly ash. Desalination 164:173–188CrossRefGoogle Scholar
  40. Rao VSS, Rajan SC (1993) Spectrophotometric determination of arsenic by molybdenum blue method in zinc-lead concentrates and related smelter products after chloroform extraction of iodide complex. Talanta 40:653–656CrossRefGoogle Scholar
  41. Samatya S, Tuncel SA, Kabay N (2015) Boron removal from RO permeate of geothermal water by monodisperse poly(vinylbenzyl chloride-co-divinylbenzene) beads containing N-methyl-d-glucamine. Desalination 364:75–81CrossRefGoogle Scholar
  42. Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21CrossRefGoogle Scholar
  43. Song S, López-Valdivieso A, Hernández-Campos DJ, Peng C, Monroy-Fernandez MG, Razo-Soto I (2006) Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res 40:364–372CrossRefGoogle Scholar
  44. Spielholtz GI, Toralballa GC, Willsen JJ (1974) Determination of total boron in sea water by atomic absorption spectroscopy. Microchim Acta 62:649–652CrossRefGoogle Scholar
  45. Tomaszewska B, Bodezek M (2013) Desalination of geothermal wasters using a hybrid UF-RO process. Part I: boron removal in pilot-scale tests. Desalination 319:99–106CrossRefGoogle Scholar
  46. Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166:415–1420CrossRefGoogle Scholar
  47. Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage 151:3326–3342CrossRefGoogle Scholar
  48. US EPA (2012) Guidelines for water reuse. Washington, DC, 643 p. Accessed 22 June 2018
  49. Wang B, Guo X, Bai P (2014) Removal technology of boron dissolved in aqueous solutions: a review. Coll Surf A 444:338–344CrossRefGoogle Scholar
  50. World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. WHO Press, GenevaGoogle Scholar
  51. Worldsteel Association (2014) Steel industry by-products. Fact Sheets, New YorkGoogle Scholar
  52. Wu Q, You R, Clark M, Yu Y (2014) Pb(II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag. App Surf Sci 314:129–137CrossRefGoogle Scholar
  53. Zhou YF, Haynes RJ (2010) Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit Rev Environ Sci Technol 40:909–977CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Instituto de Ingeniería, Coordinación de Ingeniería AmbientalUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  2. 2.Departamento de Materiales Y Manufactura DIMEI, Facultad de IngenieríaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico

Personalised recommendations