Advertisement

Co-occurrence of ESBLs and silver resistance determinants among bacterial isolates inhabiting polluted stretch of river Yamuna, India

  • M. T. Siddiqui
  • A. H. Mondal
  • I. Sultan
  • A. Ali
  • Q. M. R. HaqEmail author
Original Paper
  • 119 Downloads

Abstract

In this study, we investigated the prevalence of ESBLs producing bacteria from highly polluted stretch of river Yamuna and co-occurrence of ESBLs and silver resistance gene among tested isolates. Water samples were collected from ten different polluted sites from Delhi stretch of river Yamuna, India. Out of 399 non-duplicate isolates screened, 121 (~ 30%) were found to be ESBLs producers. ESBLs positive isolates showed high level of resistance for β-lactam and non-β-lactam antibiotics, viz. ampicillin, cephalosporins, ciprofloxacin and polymyxin-B. A significantly high level of resistance (26.4%) was observed for last resort antibiotic colistin. 69% of ESBLs positive isolates exhibited multidrug resistance phenotype and high MAR index of different sampling sites ranging from 0.21 to 0.68. Molecular characterization revealed that blaCTX-M was the most prevalent type of ESBL (60.3%) followed by blaTEM (47.9%) and blaSHV (15.7%). We further observed co-occurrence of silver resistance determinants silE, silP and silS in 49.3%, 53.4% and 36.9% isolates harboring blaCTX-M genes. Conjugation transfer assay confirmed the successful transfer of plasmid encoding ESBLs and silver resistance determinants together. To the best of our knowledge, this is first report of co-occurrence of CTX-M and silver resistance gene from aquatic environment. Moreover, this study reports occurrence of ESBL genes in Bacillus safensis and Brachymonas chironomi not reported earlier. Co-occurrence of sil and blaCTX-M gene strengthens the hypothesis of heavy metal exert selection pressure for the emergence of antibiotic resistance.

Keywords

ESBL CTX-M Antibiotic resistance Silver resistance MDR Aquatic environment 

Notes

Acknowledgements

The authors wish to acknowledge the University grants commission (UGC), India, for financial support in the form of fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alonso A, Sanchez P, Martinez JL (2001) Environmental selection of antibiotic resistance genes. Environ Microbiol 3(1):1–9.  https://doi.org/10.1046/j.1462-2920.2001.00161.x CrossRefGoogle Scholar
  2. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(1):5–16.  https://doi.org/10.1093/jac/dkf083 CrossRefGoogle Scholar
  3. Ansari S, Nepal HP, Gautam R, Shrestha S, Neopane P, Gurung G, Chapagain ML (2015) Community acquired multi-drug resistant clinical isolates of Escherichia coli in a tertiary care center of Nepal. Antimicrob Resist Infect Control 4:1–8.  https://doi.org/10.1186/s13756-015-0059-2 CrossRefGoogle Scholar
  4. Azam M, Jan AT, Haq QMR (2016) blaCTX-M-152, a novel variant of CTX-M group-25, identified in a study performed on the prevalence of multidrug resistance among natural inhabitants of river Yamuna, India. Front Microbiol 7:1–13.  https://doi.org/10.3389/fmicb.2016.00176 CrossRefGoogle Scholar
  5. Bajaj P, Singh NS, Kanaujia PK, Virdi JS (2015) Distribution and molecular characterization of genes encoding CTX-M and AmpC β-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci Total Environ 505:350–356.  https://doi.org/10.1016/j.scitotenv.2014.09.084 CrossRefGoogle Scholar
  6. Bevan ER, Jones AM, Hawkey PM (2017) Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72(8):2145–2155.  https://doi.org/10.1093/jac/dkx146 CrossRefGoogle Scholar
  7. Cantón R, Coque TM (2006) The CTX-M β-lactamase pandemic. Curr Opin Microbiol 9:466–475.  https://doi.org/10.1016/j.mib.2006.08.011 CrossRefGoogle Scholar
  8. Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304.  https://doi.org/10.1016/j.ijmm.2013.02.001 CrossRefGoogle Scholar
  9. Chen PA, Hung CH, Huang PC, Chen JR, Chiou YH, Hung WY, Wang JL, Cheng MF (2016) Characteristics of CTX-M extended-spectrum β-lactamase producing Escherichia coli strains isolated from multiple rivers in southern Taiwan. Appl Environ Microbiol 82(6):1889–1897.  https://doi.org/10.1128/aem.03222-15 CrossRefGoogle Scholar
  10. Chitanand MP, Kadam TA, Gyananath G, Totewad ND, Balhal DK (2010) Multiple antibiotic resistance indexing of coliforms to identify high risk contamination sites in aquatic environment. Indian J Microbiol 50(2):216–220.  https://doi.org/10.1007/s12088-010-0042-9 CrossRefGoogle Scholar
  11. Choudhury P, Kumar R (1998) Multidrug- and metal-resistant strains of Klebsiella pneumoniae isolated from Penaeus monodon of the coastal waters of deltaic Sundarban. Can J Microbiol 44(2):186–189.  https://doi.org/10.1139/w97-144 CrossRefGoogle Scholar
  12. Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. M100-S24. CLSI, Wayne, PAGoogle Scholar
  13. Di Cesare A, Eckert EM, D’Urso S, Bertoni R, Gillan DC, Wattiez R, Corno G (2016) Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res 1(94):208–214.  https://doi.org/10.1016/j.watres.2016.02.049 CrossRefGoogle Scholar
  14. Franz E, Veenman C, van Hoek AHAM, Husman AR, Blaak H (2015) Pathogenic Escherichia coli producing extended-spectrum β-lactamases isolated from surface water and wastewater. Sci Rep 5:14372.  https://doi.org/10.1038/srep14372 CrossRefGoogle Scholar
  15. Gandra S, Joshi J, Trett A, Lamkang AS, Laxminarayan R (2017) Scoping report on antimicrobial resistance in India. Center for Disease Dynamics, Economics and Policy, WashingtonGoogle Scholar
  16. Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188.  https://doi.org/10.1038/5545 CrossRefGoogle Scholar
  17. Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402.  https://doi.org/10.1099/00221287-147-12-3393 CrossRefGoogle Scholar
  18. Jena J, Debata NK, Sahoo RK, Gaur M, Subudhi E (2017) Molecular characterization of extended spectrum β-lactamase-producing Enterobacteriaceae strains isolated from a tertiary care hospital. Microb Pathog 115:112–116.  https://doi.org/10.1016/j.micpath.2017.12.056 CrossRefGoogle Scholar
  19. Kannan SK, Krishnamoorthy R (2006) Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury—a case study in Pulicat Lake North of Chennai, South East India. Sci Total Environ 367(1):341–353.  https://doi.org/10.1016/j.scitotenv.2005.12.003 CrossRefGoogle Scholar
  20. Kittinger C, Kirschner A, Lipp M, Baumert R, Mascher F, Farnleitner AH, Zarfel GE (2017) Antibiotic resistance of Acinetobacter spp. isolates from the river Danube: susceptibility stays high. Int J Environ Res Public Health 15(1):52.  https://doi.org/10.3390/ijerph15010052 CrossRefGoogle Scholar
  21. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2):131–138.  https://doi.org/10.1016/s0305-4179(99)00116-3 CrossRefGoogle Scholar
  22. Kremera AN, Hoffmann H (2012) Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J Clin Microbiol 50(10):3249–3257.  https://doi.org/10.1128/jcm.00885-12 CrossRefGoogle Scholar
  23. Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia to identify high-risk source of fecal contamination of foods. Appl Environ Microbiol 46:165–170Google Scholar
  24. Kumar S, Tripathi VR, Garg SK (2013) Antibiotic resistance and genetic diversity in water-borne Enterobacteriaceae isolates from recreational and drinking water sources. Int J Environ Sci Technol 10:789–798.  https://doi.org/10.1007/s13762-012-0126-7 CrossRefGoogle Scholar
  25. Lenart-Boroń A (2017) Antimicrobial resistance and prevalence of extended-spectrum beta-lactamase genes in Escherichia coli from major rivers in Podhale, southern Poland. Int J Environ Sci Technol 14:241.  https://doi.org/10.1007/s13762-016-1155-4 CrossRefGoogle Scholar
  26. Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132.  https://doi.org/10.1128/jb.179.19.6127-6132.1997 CrossRefGoogle Scholar
  27. Li XZ, Mehrotra M, Ghimire S, Adewoye L (2007) β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol 121:197–214.  https://doi.org/10.1016/j.vetmic.2007.01.015 CrossRefGoogle Scholar
  28. Liu X, Thungrat K, Boothe DM (2016) Occurrence of OXA-48 carbapenamase and other β-lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009–2013. Front Microbiol. 7:1057.  https://doi.org/10.3389/fmicb.2016.01057 Google Scholar
  29. Lu SY, Zhang YL, Geng SN, Li TY, Ye ZM, Zhang DS, Zou F, Zhou HW (2010) High diversity of extended-spectrum β-lactamase-producing bacteria in an urban river sediment habitat. Appl Environ Microbiol 76:5972–5976.  https://doi.org/10.1128/aem.00711-10 CrossRefGoogle Scholar
  30. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2011) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281.  https://doi.org/10.1111/j.1469-0691.2011.03570.x CrossRefGoogle Scholar
  31. Maravic A, Skočibušić M, Fredotović Ž, Šamanić I, Cvjetan S, Knezović M, Puizina J (2016) Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important Acinetobacter spp. Environ Sci Pollut Res Int 23:3525–3535.  https://doi.org/10.1007/s11356-015-5586-0 CrossRefGoogle Scholar
  32. O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. Rev Antimicrob Resist. http://amr-review.org/sites/default/files/160518. Accessed May 2016
  33. Percival SL, Woods E, Nutekpor M, Bowler P, Radford A, Cochrane C (2008) Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers and efficacy of silver-containing wound dressings. Ostomy Wound Manag 54:30–40Google Scholar
  34. Reinthaler FF, Feierl G, Galler H, Haas D, Leitner E, Mascher F, Melkes A, Posch J et al (2010) ESBL-producing E. coli in Austrian sewage sludge. Water Res 44:1981–1985.  https://doi.org/10.1016/j.watres.2009.11.052 CrossRefGoogle Scholar
  35. Sanderson H, Fricker C, Brown RS, Majury A, Liss SN (2016) Antibiotic resistance genes as an emerging environmental contaminant. Environ Rev 24:205–218.  https://doi.org/10.1139/er-2015-0069 CrossRefGoogle Scholar
  36. Shahid M, Singh A, Sobia F, Rashid M, Malik A, Shukla I, Khan HM (2011) blaCTX-M, blaTEM, and blaSHV in Enterobacteriaceae from North-Indian tertiary hospital: high occurrence of combination genes. Asian Pac J Trop Med 4(2):101–105.  https://doi.org/10.1016/s1995-7645(11)60046-1 CrossRefGoogle Scholar
  37. Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Deng Y, Lei T, Zhao J, Liu JH (2010) High prevalence of bla(CTX-M) extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect 16(9):1475–1481.  https://doi.org/10.1111/j.1469-0691.2010.03127.x CrossRefGoogle Scholar
  38. Sütterlin S, Edquist P, Sandegren L, Adler M, Tängdén T, Drobni M, Olsen B, Melhus Å (2014) Silver resistance genes are overrepresented among Escherichia coli Isolates with CTX-M production. Appl Environ Microbiol 80(22):6863–6869.  https://doi.org/10.1128/aem.01803-14 CrossRefGoogle Scholar
  39. Tacao M, Correia A, Hentriques I (2012) Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of blaCTX-M like genes. Appl Environ Microbiol 78:4134–4140.  https://doi.org/10.1128/aem.00359-12 CrossRefGoogle Scholar
  40. Vivant AL, Boutin C, Prost-Boucle S, Papias S, Hartmann A, Depret G, Ziebal C, Le Roux S, Pourcher AM (2016) Free water surface constructed wetlands limit the dissemination of extended-spectrum β-lactamase producing Escherichia coli in the natural environment. Water Res 104:178–188.  https://doi.org/10.1016/j.watres.2016.08.015 CrossRefGoogle Scholar
  41. Walsh F (2013) The multiple roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:255.  https://doi.org/10.3389/fmicb.2013.00255 Google Scholar
  42. Woods EJ, Cochrane CA, Percival SL (2009) Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Vet Microbiol 138(3–4):325–329.  https://doi.org/10.1016/j.vetmic.2009.03.023 CrossRefGoogle Scholar
  43. Zurfluh K, Hachler H, Nuesch-Inderbinen M, Stephan R (2013) Characteristics of extended-spectrum β-lactamase- and carbapenemase producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 79:3021–3026.  https://doi.org/10.1128/aem.00054-13 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  • M. T. Siddiqui
    • 1
  • A. H. Mondal
    • 1
  • I. Sultan
    • 1
  • A. Ali
    • 1
  • Q. M. R. Haq
    • 1
    Email author
  1. 1.Department of BiosciencesJamia Millia IslamiaNew DelhiIndia

Personalised recommendations