Advertisement

Porous expanded vermiculite containing intercalated cetyltrimethylammonium: a versatile sorbent for the hormone ethinylestradiol from aqueous medium

  • A. E. Burgos Castellanos
  • T. A. Ribeiro-Santos
  • R. M. LagoEmail author
Original Paper
  • 54 Downloads

Abstract

In this work, a sorbent was developed based on vermiculite intercalated with cetyltrimethylammonium ions to remove the hazardous hormone molecule ethinylestradiol (EE) from the aqueous medium was developed. Characterization by infrared spectroscopy, X-ray diffraction, elemental and thermal analyses, scanning and transmission electron microscopies, N2 adsorption–desorption and fluorescence showed that vermiculite can be intercalated with 16–19 wt% of cetyltrimethylammonium ions leading to an increase in the d001 space from 1.15 nm for the pure vermiculite to 1.22–1.24 nm. Sorption experiments with ethinylestradiol taking into account, contact time, pH, initial concentration and amount of adsorbent showed high ethinylestradiol sorption capacities in the range 6.5–9.3 mgEEg−1. These materials containing the hormone can be regenerated by simple solvent extraction which allowed the recovery and reuse of the adsorbent for at least five times. The obtained results suggest that hydrophobic cavities formed by the C18 chains of the cetyltrimethylammonium molecules in the vermiculite interlayer space are responsible for the sorption of the ethinylestradiol molecules.

Keywords

Vermiculite Ethinylestradiol Hexadecyltrimethylammonium Intercalated 

Notes

Acknowledgements

The authors gratefully acknowledge Universidad Nacional de Colombia, Sede-Bogotá by allowing going abroad to develop postdoctoral residency and the financial support of the CNPq (INCT Midas), CAPES, FAPEMIG and Microscopy Center—UFMG.

Supplementary material

13762_2018_1901_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1578 kb)

References

  1. Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236.  https://doi.org/10.1016/j.clay.2007.04.002 CrossRefGoogle Scholar
  2. Aftafa C, Pelit FO, Yalçinkaya EE, Turkmen H, Kapdan İ, Ertaş FN (2014) Ionic liquid intercalated clay sorbents for micro solid phase extraction of steroid hormones from water samples with analysis by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1361:43–52.  https://doi.org/10.1016/j.chroma.2014.07.095 CrossRefGoogle Scholar
  3. Aris AZ, Shamsuddin AS, Praveena SM (2014) Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int 69:104–119.  https://doi.org/10.1016/j.envint.2014.04.011 CrossRefGoogle Scholar
  4. Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS (2015) Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 214:195–219.  https://doi.org/10.1016/j.ygcen.2014.09.014 CrossRefGoogle Scholar
  5. Burgos AE, Ribeiro-Santos TA, Lago RM (2016) Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA+ intercalated montmorillonite. Water Sci Technol 74:663–671.  https://doi.org/10.2166/wst.2016.207 CrossRefGoogle Scholar
  6. de Mesquita JP, Reis LS, Purceno AD, Donnici CL, Lago RM, Pereira FV (2013) Carbon–clay composite obtained from the decomposition of cellulose nanocrystals on the surface of expanded vermiculite. J Chem Technol Biotechnol 88:1130–1135.  https://doi.org/10.1002/jctb.3952 CrossRefGoogle Scholar
  7. Duman O, Tunç S, Polat TG (2015) Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies. Appl Clay Sci 109–110:22–32.  https://doi.org/10.1016/j.clay.2015.03.003 CrossRefGoogle Scholar
  8. Fredj SB, Nobbs J, Tizaoui C, Monser L (2015) Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid–liquid extraction. Chem Eng J 262:417–426.  https://doi.org/10.1016/j.cej.2014.10.007 CrossRefGoogle Scholar
  9. Froehner S, Martins RF, Furukawa W, Errera MR (2009) Water remediation by adsorption of phenol onto hydrophobic modified clay. Water Air Soil Pollut 199:107–113.  https://doi.org/10.1007/s11270-008-9863-0 CrossRefGoogle Scholar
  10. Han J, Qiu W, Meng S, Gao W (2012) Removal of ethinylestradiol (EE2) from water via adsorption on aliphatic polyamides. Water Res 46:5715–5724.  https://doi.org/10.1016/j.watres.2012.08.001 CrossRefGoogle Scholar
  11. Han J, Qiu W, Cao Z, Hu J, Gao W (2013) Adsorption of ethinylestradiol (EE2) on polyamide 612: molecular modeling and effects of water chemistry. Water Res 47:2273–2284.  https://doi.org/10.1016/j.watres.2013.01.046 CrossRefGoogle Scholar
  12. Hu Z, He G, Liu Y, Dong C, Wu X, Zhao W (2013) Effects of surfactant concentration on alkyl chain arrangements in dry and swollen organic montmorillonite. Appl Clay Sci 75–76:134–140.  https://doi.org/10.1016/j.clay.2013.03.004 CrossRefGoogle Scholar
  13. Joseph L, Boateng LK, Flora JRV, Park Y-G, Son A, Badawy M, Yoon Y (2013) Removal of bisphenol A and 17α-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon. Sep Purif Technol 107:37–47.  https://doi.org/10.1016/j.seppur.2013.01.012 CrossRefGoogle Scholar
  14. Liu K, Wei J, Zhou X, Liu N (2015) Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution. Appl Surf Sci 337:178–187.  https://doi.org/10.1016/j.apsusc.2015.02.088 CrossRefGoogle Scholar
  15. Machado LCR, Lima FWJ, Paniago R, Ardisson JD, Sapag K, Lago RM (2006) Polymer coated vermiculite–iron composites: novel floatable magnetic adsorbents for water spilled contaminants. Appl Clay Sci 31:207–215.  https://doi.org/10.1016/j.clay.2005.07.004 CrossRefGoogle Scholar
  16. Medeiros MA, Lago RM (2011) Glycerol polymerization: a simple and versatile reaction to produce different materials from biodiesel Co-product. Quim Nova 34:1079–1084.  https://doi.org/10.1590/S0100-40422011000600028 CrossRefGoogle Scholar
  17. Medeiros MA, Sansiviero MTC, Araújo MH, Lago RM (2009) Modification of vermiculite by polymerization and carbonization of glycerol to produce highly efficient materials for oil removal. Appl Clay Sci 45:213–219.  https://doi.org/10.1016/j.clay.2009.06.008 CrossRefGoogle Scholar
  18. Medeiros MA, Cançado TM, Leite CMM, Lago RM (2012) Combined processes of glycerol polymerization/carbonization/activation to produce efficient adsorbents for organic contaminants. J Chem Technol Biotechnol 87:1654–1660.  https://doi.org/10.1002/jctb.3805 CrossRefGoogle Scholar
  19. Moura FCC, Lago RM (2009) Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic ‘nanosponges’ for oil spill remediation. Appl Catal B 90:436–440.  https://doi.org/10.1016/j.apcatb.2009.04.003 CrossRefGoogle Scholar
  20. Padilla-Ortega E, Leyva-Ramos R, Mendoza-Barron J (2014) Role of electrostatic interactions in the adsorption of cadmium(II) from aqueous solution onto vermiculite. Appl Clay Sci 88–89:10–17.  https://doi.org/10.1016/j.clay.2013.12.012 CrossRefGoogle Scholar
  21. Plachá D, Martynková GS, Bachmatiuk A, Peikertová P, Seidlerová J, Rümmeli MH (2014) The influence of pH on organovermiculite structure stability. Appl Clay Sci 93–94:17–22.  https://doi.org/10.1016/j.clay.2014.03.008 CrossRefGoogle Scholar
  22. Purceno AD, Barrioni BR, Dias A, da Costa GM, Lago RM, Moura FCC (2011) carbon nanostructures-modified expanded vermiculites produced by chemical vapor deposition from ethanol. Appl Clay Sci 54:15–19.  https://doi.org/10.1016/j.clay.2011.06.012 CrossRefGoogle Scholar
  23. Purceno AD, Teixeira APC, de Souza NJ, Fernandez-Outon LE, Ardisson JD, Lago RM (2012) Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol. J Colloid Interface Sci 379:84–88.  https://doi.org/10.1016/j.jcis.2012.04.018 CrossRefGoogle Scholar
  24. Ribeiro-Santos TA, Henriques FF, Villarroel-Rocha J, de Castro MCM, Magalhães WF, Windmöller D, Sapag K, Lago RM, Araújo MH (2016) Hydrophobic channels produced by micelle-structured CTAB inside MCM-41 mesopores: a unique trap for the hazardous hormone ethinyl estradiol. Chem Eng J 283:1203–1209.  https://doi.org/10.1016/j.cej.2015.08.029 CrossRefGoogle Scholar
  25. Rovani S, Censi MT, Pedrotti SL, Lima EC, Cataluña R, Fernandes AN (2014) Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J Hazard Mater 271:311–320.  https://doi.org/10.1016/j.jhazmat.2014.02.004 CrossRefGoogle Scholar
  26. Sadeghi Pouya E, Abolghasemi H, Assar M, Hashemi SJ, Salehpour A, Foroughi-dahr M (2015) Theoretical and experimental studies of benzoic acid batch adsorption dynamics using vermiculite-based adsorbent. Chem Eng Res Des 93:800–811.  https://doi.org/10.1016/j.cherd.2014.07.016 CrossRefGoogle Scholar
  27. Saha B, Karounou E, Streat M (2010) Removal of 17β-oestradiol and 17α-ethinyl oestradiol from water by activated carbons and hypercrosslinked polymeric phases. React Funct Polym 70:531–544.  https://doi.org/10.1016/j.reactfunctpolym.2010.04.004 CrossRefGoogle Scholar
  28. Teixeira APC, Purceno AD, Barros AS, Lemos BRS, Ardisson JD, Macedo WAA, Nassor ECO, Amorim CC, Moura FCC, Hernández-Terrones MG, Portela FM, Lago RM (2012) Amphiphilic magnetic composites based on layered vermiculite and fibrous chrysotile with carbon nanostructures: application in catalysis. Catal Today 190:133–143.  https://doi.org/10.1016/j.cattod.2012.01.042 CrossRefGoogle Scholar
  29. Teixeira APC, Purceno AD, de Paula CCA, da Silva JCC, Ardisson JD, Lago RM (2013) Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol. J Hazard Mater 248–249:295–302.  https://doi.org/10.1016/j.jhazmat.2013.01.014 CrossRefGoogle Scholar
  30. Yu X, Wei C, Ke L, Wu H, Chai X, Hu Y (2012) Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water. J Colloid Interface Sci 369:344–351.  https://doi.org/10.1016/j.jcis.2011.11.061 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  • A. E. Burgos Castellanos
    • 1
  • T. A. Ribeiro-Santos
    • 2
  • R. M. Lago
    • 2
    Email author
  1. 1.Research Group on Coordination and Bioinorganic Chemistry, Department of Chemistry, Faculty of SciencesNational University of ColombiaBogotáColombia
  2. 2.Chemistry DepartmentUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations