Advertisement

Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review

  • M. A. Mohd Adnan
  • N. Muhd JulkapliEmail author
  • M. N. I. Amir
  • A. Maamor
Review

Abstract

This review focuses on the investigation and development of various support materials in TiO2 photocatalyst system with special emphasis on the photodecolorization of synthetic dyes. Efforts have been devoted to find suitable support material of TiO2 for improving its recovery efficiency and adsorption capability. The relationship between the structural characteristics and physicochemical reactivity properties of the supported TiO2 photocatalysis has been highlighted. The vicinity of photocatalysis and support system significantly accelerated the transfer step between adsorption and overall oxidative of decolorization process. Comparison of the photodecolorization with several synthetic dyes has been made and concluded that the photocatalytic activities have been influenced by the structural and surface properties of the photocatalyst.

Graphical Abstract

Keywords

Photodegradability Light irradiation Pollutant Water treatment 

Notes

Acknowledgements

This work is financially supported by the University of Malaya Research Grant (UMRG: RP-2012E), Fundamental Research Grant Scheme (FRGS: FP049-2013B) by University of Malaya and Ministry of High Education (MOE), Malaysia.

References

  1. Abrahart EN (1977) Dyes and their intermediates. Edward Arnold, LondonGoogle Scholar
  2. Aguado J, Van Grieken R, López-Muñoz MJ, Marugán J (2002) Removal of cyanides in wastewater by supported TiO2-based photocatalysts. Catal Today 75(1–4):95–102CrossRefGoogle Scholar
  3. Ahmad Z (2014) the use of silicon carbide as scattering layer in dye sensitized solar cell (DSSC). J Ovonic Res 10(4):109–113Google Scholar
  4. Andriantsiferana C, Mohamed EF, Delmas H (2014) Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material. Environ Technol 35(1–4):355–363CrossRefGoogle Scholar
  5. Asiltürk M, Şener Ş (2012) TiO2-activated carbon photocatalysts: preparation, characterization and photocatalytic activities. Chem Eng J 180:354–363CrossRefGoogle Scholar
  6. Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77(5):445–459CrossRefGoogle Scholar
  7. Bailón-García E, Elmouwahidi A, Álvarez MA, Carrasco-Marín F, Pérez-Cadenas AF, Maldonado-Hódar FJ (2017) New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl Catal B 201:29–40CrossRefGoogle Scholar
  8. Baldissarelli VZ, de Souza T, Andrade L, Oliveira L, José HJ, Moreira RDFPM (2015) Preparation and photocatalytic activity of TiO2-exfoliated graphite oxide composite using an ecofriendly graphite oxidation method. Appl Surf Sci 359:868–874CrossRefGoogle Scholar
  9. Bhoi YP, Pradhan SR, Behera C, Mishra BG (2016) Visible light driven efficient photocatalytic degradation of Congo red dye catalyzed by hierarchical CuS–Bi2CuxW1 − xO6 − 2x nanocomposite system. RSC Adv 6(42):35589–35601CrossRefGoogle Scholar
  10. Böttcher H, Mahltig B, Sarsour J, Stegmaier T (2010) Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics. J Sol-Gel Sci Technol 55(2):177–185CrossRefGoogle Scholar
  11. Bouslama M, Amamra M, Jia Z, Ben Amar M, Chhor K, Brinza O, Kanaev A (2012) Nanoparticulate TiO2–Al2O3 photocatalytic media: effect of particle size and polymorphism on photocatalytic activity. ACS Catal 2(9):1884–1892CrossRefGoogle Scholar
  12. Carneiro J, Teixeira V, Nascimento J, Neves J, Tavares P (2011) Photocatalytic activity and UV-protection of TiO2 nanocoatings on poly (lactic acid) fibres deposited by pulsed magnetron sputtering. J Nanosci Nanotechnol 11(10):8979–8985CrossRefGoogle Scholar
  13. Cassano AE, Alfano OM (2000) Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal Today 58(2):167–197CrossRefGoogle Scholar
  14. Chang X, Li Z, Zhai X, Sun S, Gu D, Dong L et al (2016) Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Mater Des 98:324–332CrossRefGoogle Scholar
  15. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325CrossRefGoogle Scholar
  16. Chen M-L, Bae J-S, Oh W-C (2006) Preparation of carbon-coated TiO2 at different heat treatment temperatures and their photoactivity. Carbon Lett 7(4):259–265CrossRefGoogle Scholar
  17. Chun H, Yizhong W, Hongxiao T (2001) Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes. Appl Catal B 30(3):277–285CrossRefGoogle Scholar
  18. Da Dalt S, Alves A, Bergmann C (2013) Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Mater Res Bull 48(5):1845–1850CrossRefGoogle Scholar
  19. Danion A, Bordes C, Disdier J, Gauvrit J-Y, Guillard C, Lantéri P, Jaffrezic-Renault N (2004) Optimization of a single TiO2-coated optical fiber reactor using experimental design. J Photochem Photobiol A 168(3):161–167CrossRefGoogle Scholar
  20. Das L, Basu JK (2015) Photocatalytic treatment of textile effluent using titania-zirconia nano composite catalyst. J Ind Eng Chem 24:245–250CrossRefGoogle Scholar
  21. Dhanya A, Aparna K (2016) Synthesis and evaluation of TiO2/chitosan based hydrogel for the adsorptional photocatalytic degradation of azo and anthraquinone dye under UV light irradiation. Procedia Technol 24:611–618CrossRefGoogle Scholar
  22. Dirè S, Ceccato R, Babonneau F (2005) Structural and microstructural evolution during pyrolysis of hybrid polydimethylsiloxane-titania nanocomposites. J Sol-Gel Sci Technol 34(1):53–62CrossRefGoogle Scholar
  23. Dong P, Hou G, Liu C, Zhang X, Tian H, Xu F et al (2016) Origin of activity and stability enhancement for Ag3PO4 photocatalyst after calcination. Materials 9(12):1–17Google Scholar
  24. Dozzi MV, Chiarello GL, Pedroni M, Livraghi S, Giamello E, Selli E (2017) High Photocatalytic Hydrogen Production on Cu(II) Pre-grafted Pt/TiO2. Appl Catal B 209:417–428CrossRefGoogle Scholar
  25. Enriquez R, Pichat P (2006) Different net effect of TiO2 sintering temperature on the photocatalytic removal rates of 4-chlorophenol, 4-chlorobenzoic acid and dichloroacetic acid in water. J Environ Sci Health Part A 41(6):955–966CrossRefGoogle Scholar
  26. Eswar NK, Ramamurthy PC, Madras G (2015) Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation. Photochem Photobiol Sci 14(7):1227–1237CrossRefGoogle Scholar
  27. Farzana MH, Meenakshi S (2013) Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind Eng Chem Res 53(1):55–63.  https://doi.org/10.1021/ie402347g CrossRefGoogle Scholar
  28. Fateh R, Dillert R, Bahnemann D (2013) Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate. Langmuir 29(11):3730–3739CrossRefGoogle Scholar
  29. Gao XT, Wachs IE (1999) Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51(2):233–254.  https://doi.org/10.1016/s0920-5861(99)00048-6 CrossRefGoogle Scholar
  30. Ghosh SN (2006) Environmental hydrology and hydraulics: eco-technological practices for sustainable development. CRC Press, Boca RatonGoogle Scholar
  31. Ghosh T, Oh W-C (2012) Carbon based titania photocatalysts. Asian J Chem 24(12):5419Google Scholar
  32. Gómez-Solís C, Juárez-Ramírez I, Moctezuma E, Torres-Martínez LM (2012) Photodegradation of indigo carmine and methylene blue dyes in aqueous solution by SiC–TiO2 catalysts prepared by sol–gel. J Hazard Mater 217:194–199CrossRefGoogle Scholar
  33. González JA, Villanueva ME, Piehl LL, Copello GJ (2015) Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chem Eng J 280:41–48CrossRefGoogle Scholar
  34. Guesh K, Marquez-Alvarez C, Chebude Y, Diaz I (2016a) Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y. Appl Surf Sci 378:473–478.  https://doi.org/10.1016/j.apsusc.2016.04.029 CrossRefGoogle Scholar
  35. Guesh K, Mayoral A, Marquez-Alvarez C, Chebude Y, Diaz I (2016b) Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous Mesoporous Mater 225:88–97.  https://doi.org/10.1016/j.micromeso.2015.12.001 CrossRefGoogle Scholar
  36. Guillard C, Disdier J, Monnet C, Dussaud J, Malato S, Blanco J, Herrmann J-M (2003) Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Appl Catal B 46(2):319–332CrossRefGoogle Scholar
  37. Guillard C, Debayle D, Gagnaire A, Jaffrezic H, Herrmann J-M (2004) Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and sol–gel methods. Mater Res Bull 39(10):1445–1458CrossRefGoogle Scholar
  38. Hamdi A, Boufi S, Bouattour S (2015) Phthalocyanine/chitosan-TiO2 photocatalysts: characterization and photocatalytic activity. Appl Surf Sci 339:128–136CrossRefGoogle Scholar
  39. Han X, Cai L, Deng HP, Shi J (2014) The study of TiO2-ZrO2 preparation and its elimination efficiency on triclosan. Bulg Chem Commun 46(4):847–851Google Scholar
  40. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269CrossRefGoogle Scholar
  41. Hou H, Shang M-H, Gao F, Wang L, Liu Q, Zheng J et al (2016) Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl Mater Interfaces 8:20128–20137CrossRefGoogle Scholar
  42. Hsieh SH, Chen WJ, Wu CT (2015) Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Appl Surf Sci 340:9–17CrossRefGoogle Scholar
  43. Humans I. W. G. o. t. E. o. C. R. t. (2010) IARC monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. World Health Organization, International Agency for Research on Cancer, vol 94Google Scholar
  44. Hunger K (2007) Industrial dyes: chemistry, properties, applications. Wiley, New YorkGoogle Scholar
  45. Inturi SNR, Suidan M, Smirniotis PG (2016) Influence of synthesis method on leaching of the Cr-TiO2 catalyst for visible light liquid phase photocatalysis and their stability. Appl Catal B 180:351–361CrossRefGoogle Scholar
  46. Ismail AA, Abdelfattah I, Atitar MF, Robben L, Bouzid H, Al-Sayari SA, Bahnemann DW (2015) Photocatalytic degradation of imazapyr using mesoporous Al2O3–TiO2 nanocomposites. Sep Purif Technol 145:147–153CrossRefGoogle Scholar
  47. Jeong M-G, Seo HO, Kim K-D, Kim YD, Lim DC (2012) Enhanced photocatalytic activity of TiO2 by polydimethylsiloxane deposition and subsequent thermal treatment at 800 °C. Thin Solid Films 520(15):4929–4933CrossRefGoogle Scholar
  48. Ji Q, Yu X, Zhang J, Liu Y, Shang X, Qi X (2017a) Photocatalytic degradation of diesel pollutants in seawater by using ZrO2 (Er3+)/TiO2 under visible light. J Environ Chem Eng 5(2):1423–1428CrossRefGoogle Scholar
  49. Ji W, Qu J, Li C-A, Wu J-W, Jing S, Gao F et al (2017b) In situ surface assembly of core-shell TiO2-copper(I) cluster nanocomposites for visible-light photocatalytic reduction of Cr(VI). Appl Catal B 205:368–375CrossRefGoogle Scholar
  50. Jia J, Li D, Wan J, Yu X (2016) Characterization and mechanism analysis of graphite/C-doped TiO2 composite for enhanced photocatalytic performance. J Ind Eng Chem 33:162–169.  https://doi.org/10.1016/j.jiec.2015.09.030 CrossRefGoogle Scholar
  51. Jiang C, Guo Y, Hu C, Wang C, Li D (2004) Photocatalytic degradation of dye naphthol blue black in the presence of zirconia-supported Ti-substituted Keggin-type polyoxometalates. Mater Res Bull 39(2):251–261CrossRefGoogle Scholar
  52. Jiang T, Tao Z, Ji M, Zhao Q, Fu X, Yin H (2012) Preparation and photocatalytic property of TiO2-graphite oxide intercalated composite. Catal Commun 28:47–51CrossRefGoogle Scholar
  53. Juárez-Ramírez I, Moctezuma E, Torres-Martínez LM, Gómez-Solís C (2013) Short time deposition of TiO2 nanoparticles on SiC as photocatalysts for the degradation of organic dyes. Res Chem Intermed 39(4):1523–1531CrossRefGoogle Scholar
  54. Kamegawa T, Yamahana D, Yamashita H (2010) Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of photocatalytic activity. J Phys Chem C 114(35):15049–15053CrossRefGoogle Scholar
  55. Kang H, Wang HP (2013) Preparation of magnetic recoverable nanosize Cu–Fe2O3/Fe photocatalysts. Environ Sci Technol 47:7380–7387CrossRefGoogle Scholar
  56. Kerli S, Alver Ü (2016) Preparation and characterisation of ZnO/NiO nanocomposite particles for solar cell applicationsGoogle Scholar
  57. Korala L, Germain JR, Chen E, Pala IR, Li D, Brock SL (2017) CdS aerogels as efficient photocatalysts for degradation of organic dyes under visible light irradiation. Inorg Chem Front.  https://doi.org/10.1039/C7QI00140A CrossRefGoogle Scholar
  58. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241.  https://doi.org/10.1021/jp204364a CrossRefGoogle Scholar
  59. Kwon Y-N, Leckie JO (2006) Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J Membr Sci 282(1–2):456–464CrossRefGoogle Scholar
  60. Laing D, Kean WF (2011) The Greening of healthcare: fabrics used in health care facilities. Coll Publ 6(4):45–64Google Scholar
  61. Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219(1):48–56CrossRefGoogle Scholar
  62. Lei Y, Zhang C, Lei H, Huo J (2013) Visible light photocatalytic activity of aromatic polyamide dendrimer/TiO2 composites functionalized with spirolactam-based molecular switch. J Colloid Interface Sci 406:178–185CrossRefGoogle Scholar
  63. Li S-K, Huang F-Z, Wang Y, Shen Y-H, Qiu L-G, Xie A-J, Xu S-J (2011) Magnetic Fe3O4CCu2O composites with bean-like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. J Mater Chem 21(20):7459CrossRefGoogle Scholar
  64. Li D, Jia J, Zhang Y, Wang N, Guo X, Yu X (2016) Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant. J Hazard Mater 315:1–10.  https://doi.org/10.1016/j.jhazmat.2016.04.053 CrossRefGoogle Scholar
  65. Li H, Su Z, Hu S, Yan Y (2017a) Free-standing and flexible Cu/Cu2O/CuO heterojunction net: a novel material as cost-effective and easily recycled visible-light photocatalyst. Appl Catal B 207:134–142.  https://doi.org/10.1016/j.apcatb.2017.02.013 CrossRefGoogle Scholar
  66. Li X, Wang Y, Xie Y, Yin S, Lau R, Xu R (2017b) CdS nanoparticles loaded on porous poly-melamine–formaldehyde polymer for photocatalytic dye degradation. Res Chem Intermed.  https://doi.org/10.1007/s11164-017-3048-7 CrossRefGoogle Scholar
  67. Liu M, Cheng Z, Yan J, Qiang L, Ru X, Liu F, Li J (2013) Preparation and characterization of TiO2 nanofibers via using polylactic acid as template. J Appl Polym Sci 128(2):1095–1100CrossRefGoogle Scholar
  68. Lombardi M, Palmero P, Sangermano M, Varesano A (2011) Electrospun polyamide-6 membranes containing titanium dioxide as photocatalyst. Polym Int 60(2):234–239.  https://doi.org/10.1002/pi.2932 CrossRefGoogle Scholar
  69. Lu M, Pichat P (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, New YorkGoogle Scholar
  70. Lv K, Xu Y (2006) Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: the difference in the production of reactive species. J Phys Chem B 110(12):6204–6212CrossRefGoogle Scholar
  71. Lysun NV, Anisimov VM, Anisimova OM, Krichevskii GY (1988) On mechanism of stabilizing action of dispersed dyes on photodegradation of polyamide. Vysokomol Soedin Seriya A 30(1):39–43Google Scholar
  72. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res/Environ Mutagen Relat Subj 113(3–4):173–215Google Scholar
  73. Martins AC, Cazetta AL, Pezoti O, Souza JRB, Zhang T, Pilau EJ et al (2016) Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram Int.  https://doi.org/10.1016/j.ceramint.2016.12.088 CrossRefGoogle Scholar
  74. McNally T, Raymond Murphy W, Lew CY, Turner RJ, Brennan GP (2003) Polyamide-12 layered silicate nanocomposites by melt blending. Polymer 44(9):2761–2772CrossRefGoogle Scholar
  75. Mejía MI, Marín JM, Restrepo G, Rios LA, Pulgarín C, Kiwi J (2010) Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol. Appl Catal B 94(1–2):166–172CrossRefGoogle Scholar
  76. Min Z, Wang X, Li Y, Jiang J, Li J, Qian D, Li J (2017) A highly efficient visible-light-responding Cu2O–TiO2/g-C3N4 photocatalyst for instantaneous discolorations of organic dyes. Mater Lett 193:18–21.  https://doi.org/10.1016/j.matlet.2017.01.083 CrossRefGoogle Scholar
  77. Mo JH, Lee YH, Kim J, Jeong JY, Jegal J (2008) Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes Pigm 76(2):429–434CrossRefGoogle Scholar
  78. Mohd Adnan MA, Muhd Julkapli N, Bee Abd Hamid S (2016) Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev Inorg Chem 36(2):77–104CrossRefGoogle Scholar
  79. Mohite SV, Ganbavle VV, Rajpure KY (2017) Photoelectrocatalytic activity of immobilized Yb doped WO3 photocatalyst for degradation of methyl orange dye. J Energy Chem 26(3):440–447.  https://doi.org/10.1016/j.jechem.2017.01.001 CrossRefGoogle Scholar
  80. Monllor-Satoca D, Gómez R, González-Hidalgo M, Salvador P (2007) The “direct–indirect” model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129(1):247–255CrossRefGoogle Scholar
  81. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:1–25CrossRefGoogle Scholar
  82. Nagarjuna R, Roy S, Ganesan R (2015) Polymerizable sol–gel precursor mediated synthesis of TiO2 supported zeolite-4A and its photodegradation of methylene blue. Microporous Mesoporous Mater 211:1–8CrossRefGoogle Scholar
  83. Nakata K, Kimura H, Sakai M, Ochiai T, Sakai H, Murakami T, Fujishima A (2010) UV/thermally driven rewritable wettability patterns on TiO2—PDMS composite films. ACS Appl Mater Interfaces 2(9):2485–2488CrossRefGoogle Scholar
  84. Nakayama N, Hayashi T (2007) Preparation and characterization of poly (l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92(7):1255–1264CrossRefGoogle Scholar
  85. Nawi M, Sabar S (2012) Photocatalytic decolourisation of reactive red 4 dye by an immobilised TiO2/chitosan layer by layer system. J Colloid Interface Sci 372(1):80–87CrossRefGoogle Scholar
  86. Noorjahan M, Kumari VD, Subrahmanyam M, Boule P (2004) A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Appl Catal B 47(3):209–213CrossRefGoogle Scholar
  87. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  88. Oh W, Bae J, Chen M, Ko Y (2006) Characterization of composite prepared with different mixing ratios of TiO2 to activity carbon and their photocatalytic activity. Anal Sci Technol 19(5):376–382Google Scholar
  89. Oh W-C, Chen M-L, Zhang F-J (2010a) Review of carbon based titania photocatalysts. J Photocatal Sci 1(2):29–34Google Scholar
  90. Oh W-C, Zhang F-J, Chen M-L (2010b) Characterization and photodegradation characteristics of organic dye for Pt–titania combined multi-walled carbon nanotube composite catalysts. J Ind Eng Chem 16(2):321–326CrossRefGoogle Scholar
  91. Patsoura A, Kondarides DI, Verykios XE (2006) Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Appl Catal B 64(3–4):171–179.  https://doi.org/10.1016/j.apcatb.2005.11.015 CrossRefGoogle Scholar
  92. Prival MJ, Bell SJ, Mitchell VD, Peiperl MD, Vaughan VL (1984) Mutagenicity of benzidine 3and benzidine-congener dyes and selected monoazo dyes in a modified Salmonella assay. Mutat Res/Genet Toxicol 136(1):33–47CrossRefGoogle Scholar
  93. Puentes-Cárdenas IJ, Chávez-Camarillo GM, Flores-Ortiz CM, Cristiani-Urbina MDC, Netzahuatl-Muñoz AR, Salcedo-Reyes JC et al (2016) Adsorptive removal of acid blue 80 dye from aqueous solutions by Cu–TiO2. J Nanomater 2016:14CrossRefGoogle Scholar
  94. Rahimi R, Bathaee H, Rabbani M (2012) Degradation of rhodamine B using Cr-doped TiO2 under visible light irradiation. In: ECSOC-16, vol 11, pp 1–9Google Scholar
  95. Reynolds TS (2001) Engineering, chemical. Rothenberg, Marc, history of science in United States: an encyclopedia. Garland Publishing, New York City, ISBN 0-8153-0762-4, LCCN, 99043757Google Scholar
  96. Riaz U, Ashraf S, Kashyap J (2015) Role of conducting polymers in enhancing TiO2-based photocatalytic dye degradation: a short review. Polym-Plast Technol Eng 54(17):1850–1870CrossRefGoogle Scholar
  97. Sakthivel S, Shankar M, Palanichamy M, Arabindoo B, Murugesan V (2002) Photocatalytic decomposition of leather dye: comparative study of TiO2 supported on alumina and glass beads. J Photochem Photobiol A 148(1):153–159CrossRefGoogle Scholar
  98. Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: a revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111(45):17038–17043CrossRefGoogle Scholar
  99. Sangareswari M, Sundaram MM (2015) A comparative study on photocatalytic efficiency of TiO2 and BiVO4 nanomaterial for degradation of methylene blue dye under sunlight irradiation. J Adv Chem Sci 1(2):75–77Google Scholar
  100. Setthaya N, Chindaprasirt P, Yin S, Pimraksa K (2017) TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol.  https://doi.org/10.1016/j.powtec.2017.01.014 CrossRefGoogle Scholar
  101. Shao X, Lu W, Zhang R, Pan F (2013) Enhanced photocatalytic activity of TiO2–C hybrid aerogels for methylene blue degradation. Sci Rep 3:3018CrossRefGoogle Scholar
  102. Sharma M, Jain T, Singh S, Pandey OP (2012) Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles. Sol Energy 86(1):626–633CrossRefGoogle Scholar
  103. Sher Shah MSA, Park AR, Zhang K, Park JH, Yoo PJ (2012) Green synthesis of biphasic TiO2—reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4(8):3893–3901CrossRefGoogle Scholar
  104. Singh S, Singh P, Mahalingam H (2015) A novel and effective strewn polymer-supported titanium dioxide photocatalyst for environmental remediation. J Mater Environ Sci 6:349–358Google Scholar
  105. Škorić ML, Terzić I, Milosavljević N, Radetić M, Šaponjić Z, Radoičić M, Krušić MK (2016) Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. Eur Polym J 82:57–70CrossRefGoogle Scholar
  106. Sudrajat H, Babel S (2016) An innovative solar photoactive system N-WO3@polyester fabric for degradation of amaranth in a thin-film fixed-bed reactor. Sol Energy Mater Sol Cells 149:294–303CrossRefGoogle Scholar
  107. Sudrajat H, Babel S, Sakai H, Takizawa S (2016) Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO2. J Environ Manag 165:224–234CrossRefGoogle Scholar
  108. Sun Z, Chen Y, Ke Q, Yang Y, Yuan J (2002) Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. J Photochem Photobiol A 149(1):169–174CrossRefGoogle Scholar
  109. Tadjarodi A, Akhavan O, Bijanzad K (2015) Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis(2-aminonicotinato) copper(II) microflakes. Trans Nonferr Met Soc China (English Edition) 25(11):3634–3642CrossRefGoogle Scholar
  110. Xie TH, Lin J (2007) Origin of photocatalytic deactivation of TiO2 film coated on ceramic substrate. J Phys Chem C 111(27):9968–9974.  https://doi.org/10.1021/jp072334h CrossRefGoogle Scholar
  111. Xin B, Wang P, Ding D, Liu J, Ren Z, Fu H (2008) Effect of surface species on Cu–TiO2 photocatalytic activity. Appl Surf Sci 254(9):2569–2574CrossRefGoogle Scholar
  112. Xing ZP, Li JZ, Wang Q, Zhou W, Tian GH, Pan K et al (2013) A Floating Porous Crystalline TiO2 Ceramic with Enhanced Photocatalytic Performance for Wastewater Decontamination. Eur J Inorg Chem 13:2411–2417.  https://doi.org/10.1002/ejic.201201494 CrossRefGoogle Scholar
  113. Xing B, Shi C, Zhang C, Yi G, Chen L, Guo H et al (2016) Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J Nanomater 2016:1–10CrossRefGoogle Scholar
  114. Xu Y-J, Zhuang YB, Fu XZ (2010) New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange. J Phys Chem C 114(6):2669–2676CrossRefGoogle Scholar
  115. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interface Sci 209:172–184CrossRefGoogle Scholar
  116. You-ji L, Wei C (2011) Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2–zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal Sci Technol 1(5):802–809CrossRefGoogle Scholar
  117. Yuan Q, Liu Y, Li LL, Li ZX, Fang CJ, Duan WT, Yan CH (2009) Highly ordered mesoporous titania-zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution. Microporous Mesoporous Mater 124(1–3):169–178CrossRefGoogle Scholar
  118. Zayadi RA, Bakar FA (2017) Comparative study on the performance of Au/F-TiO2 photocatalyst synthesized from Zamzam water and distilled water under blue light irradiation. J Photochem Photobiol A 346:338–350CrossRefGoogle Scholar
  119. Zhang H, Yang L (2012) Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method. Thin Solid Films 520(18):5922–5927CrossRefGoogle Scholar
  120. Zhang LW, Fu HB, Zhu YF (2008a) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Func Mater 18(15):2180–2189.  https://doi.org/10.1002/adfm.200701478 CrossRefGoogle Scholar
  121. Zhang LW, Fu HB, Zhu YF (2008b) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater 18(15):2180–2189CrossRefGoogle Scholar
  122. Zhang Q-H, Han W-D, Hong Y-J, Yu J-G (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148(3):335–340CrossRefGoogle Scholar
  123. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010a) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386.  https://doi.org/10.1021/nn901221k CrossRefGoogle Scholar
  124. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010b) TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 4(12):7303–7314CrossRefGoogle Scholar
  125. Zhang WL, Liu YD, Choi HJ (2011) Graphene oxide coated core–shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J Mater Chem 21(19):6916–6921CrossRefGoogle Scholar
  126. Zhang J, Wang X, Xia P, Wang X, Huang J, Chen J, Zhao J (2016) Enhanced sunlight photocatalytic activity and recycled Ag–N co-doped TiO2 supported by expanded graphite C/C composites for degradation of organic pollutants. Res Chem Intermed 42(6):5541–5557CrossRefGoogle Scholar
  127. Zhao D, Chen C, Wang Y, Ma W, Zhao J, Rajh T, Zang L (2007) Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: structure, interaction, and interfacial electron transfer. Environ Sci Technol 42(1):308–314CrossRefGoogle Scholar
  128. Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S, Zong H (2000) Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution. Chemosphere 41(3):303–309CrossRefGoogle Scholar
  129. Zhu L, Meng Z, Chen M, Zhang F, Choi J, Park J, Oh W (2010) Photodegradation of MB solution by the metal (Fe, Ni and Co) containing AC/TiO2 photocatalyst under the UV irradiation. J Photo Sci 1:69Google Scholar
  130. Zhu Y, Buonocore GG, Lavorgna M, Ambrosio L (2011) Poly (lactic acid)/titanium dioxide nanocomposite films: influence of processing procedure on dispersion of titanium dioxide and photocatalytic activity. Polym Compos 32(4):519–528CrossRefGoogle Scholar
  131. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley, New YorkGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Nanotechnology and Catalysis Research Center (NANOCAT), Level 3, Block A, Institute of Postgraduate Studies (IPS)University of MalayaKuala LumpurMalaysia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Engineering, Faculty of Engineering and Life SciencesUniversity SelangorBestari JayaMalaysia

Personalised recommendations