Advertisement

Effect of the diffusivity on the transport and fate of pesticides in water

  • S. Sarraute
  • P. HussonEmail author
  • M. C. Gomes
Original Paper
  • 57 Downloads

Abstract

Diffusion coefficients of six common pesticides—cyromazine, chlorotoluron, pirimicarb, metazachlor, tebuconazole and sulcotrione—in water were measured as a function of temperature from 5 to 50 °C using the Taylor dispersion technique. At room temperature (25 °C), the lower diffusivity, 0.35 × 10−9 m2 s−1, is obtained for tebuconazole. For the other studied pesticides, diffusivities are higher, varying at 25 °C from 0.59 × 10−9 m2 s−1 for pirimicarb to 0.73 × 10−9 m2 s−1 for cyromazine. A group contribution method was developed to estimate diffusion coefficients of a larger number of pesticides, leading to a precision of 15%. Diffusion coefficients were then incorporated in a prediction scheme of the fate of persistent pollutants in the environment (fugacity soil model). The precision obtained with the group contribution model was proved to be sufficient for use in this environmental model. The introduction in such a model of an experimental or estimated value for the diffusion coefficient thus different for each pesticide is an improvement compared to the use of a constant value as often proposed in the literature.

Keywords

Diffusivity Pesticides Group contribution method Environmental fate Fugacity model 

Notes

Acknowledgements

The authors thank the Regional Auvergne Council, CNRS, the French Ministry of Higher Education and Research and the European Regional Development Fund for financial support to buy the diffusion coefficient equipment. The authors acknowledge Philippe Bouchard for giving tebuconazole samples.

References

  1. Ali I, Jain CK (1998) Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr Sci 75:1011–1014Google Scholar
  2. Ali I, Singh P, Rawat MSM, Badoni A (2008) Analysis of organochlorine pesticides in the Hindon river water, India. J Environ Prot Sci 2:47–53Google Scholar
  3. Alizabeth A, Nieto de Castro CA, Wakeham WA (1980) The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int J Thermophys 1:243–283CrossRefGoogle Scholar
  4. Batiha MA, Kadhum AAH, Mohamad AB, Takriff MS, Fisal Z, Wan Daud WR, Batiha MM (2009) Modeling the fate and transport of non-volatile organic chemicals in the agro-ecosystem: a case study of Cameron Highlands, Malaysia. Process Saf Environ Prot 87:121–134CrossRefGoogle Scholar
  5. Baum EJ (1998) Chemical property estimation: theory and application. Lewis Publishers, Boca RatonGoogle Scholar
  6. Bonoli L, Witherspoon PA (1968) Diffusion of aromatic and cycloparaffin hydrocarbons in water from 2 to 60°. J Phys Chem 72:2532–2534CrossRefGoogle Scholar
  7. Camenzuli L, Scheringer M, Gaus C, Ng CA, Hungerbuhler K (2012) Describing the environmental fate of diuron in a tropical river catchment. Sci Total Environ 440:178–185CrossRefGoogle Scholar
  8. Cussler EL (1997) Diffusion mass transfer in fluids systems. Cambridge University Press, CambridgeGoogle Scholar
  9. Delgado JMPQ (2007) Molecular diffusion coefficients of organic compounds in water at different temperatures. J Phase Equilib Diffus 28:427–432CrossRefGoogle Scholar
  10. Easteal AJ, Woolf LA (1985) Pressure and temperature dependance of tracer diffusion coefficients of methanol, ethanol, acetonitrile and formamide in water. J Phys Chem 89:1066–1169CrossRefGoogle Scholar
  11. Funazukuri T, Nishio M (1999) Infinite dilution binary diffusion coefficients of C5-monoalcohols in water in the temperature range from 273.2 K to 353.2 K at 0.1 MPa. J Chem Eng Data 44:73–76CrossRefGoogle Scholar
  12. Gary-Bobo CM, Weber HW (1969) Diffusion of alcohols and amides in water. J Phys Chem 73:1155–1156CrossRefGoogle Scholar
  13. Gosting LJ, Akeley DF (1952) A study of the diffusion of urea in water at 25° with the Gouy interference method. J Am Chem Soc 74:2058–2206CrossRefGoogle Scholar
  14. Gustafson KE, Dickhut RM (1994) Molecular diffusivity of polycyclic aromatic hydrocarbons. J Chem Eng Data 39:281–285CrossRefGoogle Scholar
  15. Hancil V, Rod V, Rosenbaun M (1979) Diffusivity determination from the response to injection into laminar liquid flow in a capillary. Chem Eng Commun 3:155–163CrossRefGoogle Scholar
  16. Hao L, Leaist DG (1996) Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol. J Eng Chem Data 41:210–213CrossRefGoogle Scholar
  17. Harris KR (1991) On the use of the Edgeworth–Cramer series to obtain diffusion coefficients from Taylor dispersion peaks. J Sol Chem 20:595–606CrossRefGoogle Scholar
  18. Harris KR, Lam HN (1995) Mutual diffusion coefficients and viscosites for the water-2-methylpropan-2-ol system at 15 and 25°C. J Chem Soc Faraday Trans 91:4071–4077CrossRefGoogle Scholar
  19. Harris KR, Goscinska T, Lam HN (1993) Mutual diffusion coefficients for the systems water–ethanol and water–propan-1-ol at 25°C. J Chem Soc Faraday Trans 89:1969–1974CrossRefGoogle Scholar
  20. Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20:611–615CrossRefGoogle Scholar
  21. Jury WA, Spencer WF, Farmer WJ (1983) Behavior assessment model for trace organics in soil: I. Model description. J Environ Qual 12:558–564CrossRefGoogle Scholar
  22. Katagi T, Ose K (2015) Toxicity, bioaccumulation and metabolism of pesticides in the earthworm. J Pestic Sci 40:69–81CrossRefGoogle Scholar
  23. Kaushik P, Kaushik G (2007) An assessment of structure and toxicity correlation in organochlorine pesticides. J Hazard Mater 143:102–111CrossRefGoogle Scholar
  24. Lampreia IMS, Santos AFS, Barbas MJA, Santos FJS, Matos Lopes MLS (2007) Changes in aggregation patterns detected by diffusion, viscosity, and surface tension in water + 2-(diethylamino)ethanol mixtures at different temperatures. J Chem Eng Data 52:2388–2394CrossRefGoogle Scholar
  25. Luo Y, Zhang M (2009) Multimedia transport and risk assessment of organophosphate pesticides and a case study in the northern San Joaquin Valley of California. Chemosphere 75:969–978CrossRefGoogle Scholar
  26. Ma YG, Lei Y, Xiao H, Wania F, Wang WH (2010) Critical review and recommended values for physical–chemical property data of 15 polycyclic aromatic hydrocarbons at 25°C. J Chem Eng Data 55:819–825CrossRefGoogle Scholar
  27. Mackay D (2001) Multimedia environment models, the fugacity approach, 2nd edn. CRC Taylor and Francis, Boca RatonCrossRefGoogle Scholar
  28. Malanichev A, Mantseva E, Shatalov V, Strukhov A, Vulikh N (2004) Numerical evaluation of the polychlorinated biphenyls transport over the northern hemisphere. Environ Pollut 128:279–289CrossRefGoogle Scholar
  29. Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C (2013) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxixology 307:74–88CrossRefGoogle Scholar
  30. Muir DCG, Teixeira C, Wania F (2004) Empirical and modeling evidence of regional atmospheric transport of current-use pesticides. Environ Toxicol Chem 23:2421–2432CrossRefGoogle Scholar
  31. Niesner R, Heintz A (2000) Diffusion coefficients of aromatics in aqueous solution. J Chem Eng Data 45:1121–1124CrossRefGoogle Scholar
  32. Othmer DF, Thakar MS (1953) Correlating diffusion coefficients in liquids. Ind Eng Chem 45:589–593CrossRefGoogle Scholar
  33. Otto S, Pappalardo SE, Cardinali A, Masin R, Zanin G, Borin M (2016) Vegetated ditches for the mitigation of pesticides runoff in the Po valley. PLoS ONE 11:e0153287CrossRefGoogle Scholar
  34. Price WE, Trickett KA, Harris KR (1989) Association of caffeine in aqueous solution. J Chem Soc Faraday Trans 85:3281–3288CrossRefGoogle Scholar
  35. Raveton M, Schneider A, Deprez-Durand C, Ravanel P, Tissut M (1999) Comparative diffusion of atrazine inside aqueous or organic matrices and inside plant seedings. Pestic Biochem Physiol 65:36–43CrossRefGoogle Scholar
  36. Ribeiro ACF, Barros MCF, Verissimo LMP, Santos CIAV, Cabral AMTDPV, Gaspar GD, Esteso MA (2012) Diffusion coefficients of paracetamol in aqueous solutions. J Chem Thermodyn 54:97–99CrossRefGoogle Scholar
  37. Sarraute S, Costa Gomes MF, Padua AAH (2009) Diffusion coefficients of 1-alkyl-3-methylimidazolium ionic liquids in water, methanol and acetonitrile at infinte dilution. J Chem Eng Data 54:2389–2394CrossRefGoogle Scholar
  38. Scheringer M, Wania F (2003) Multimedia models of global transport and fate of persistent organic pollutants. In: Fiedler H (ed) Hand-book of environmental chemistry. Springer, Berlin, pp 237–269Google Scholar
  39. Scott HD, Phillips RE (1973) Self-diffusion coefficients of selected herbicides in water and estimates of their transmission factors in soil. Soil Sci Soc Am Proc 37:965–967CrossRefGoogle Scholar
  40. Semeena VS, Feichter J, Lammel G (2005) Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants—example of DDT and γ-HCH. Atmos Chem Phys 5:12569–12615CrossRefGoogle Scholar
  41. Shen L, Wania F (2005) Compilation, evaluation and selection of physical–chemical property data for organochlorine pesticides. J Chem Eng Data 50:742–768CrossRefGoogle Scholar
  42. Shiu WY, Mackay D (1986) A critical review of aqueous solubility, vapor pressure, Henry’s law constants, and octanol–water partition coefficients of polychlorinated biphenyls. J Phys Chem Ref Data 15:911–929CrossRefGoogle Scholar
  43. Snidjer ED, Riele MJM (1993) Diffusion coefficients of several aqueous alkanolamine solutions. J Chem Eng Data 38:475–480CrossRefGoogle Scholar
  44. Stokes RH (1950a) The diffusion coefficients of eight uni-univalent electrolytes in aqueous solution at 25 °C. J Am Chem Soc 72:2243–2247CrossRefGoogle Scholar
  45. Stokes RH (1950b) The improved diaphragm-cell for diffusion studies, and some tests of the method. J Am Chem Soc 72:763–767CrossRefGoogle Scholar
  46. Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D (1998) Critical review of Henry’s law constants for pesticides. Rev Environ Contam Toxicol 103:1–59Google Scholar
  47. Tominaga T, Matsumoto S, Takanaka JI (1984) Limiting interdiffusion coefficients of benzene, toluene, ethylbenzene and hexafluorobenzene in water from 298 to 368 K. J Chem Soc Faraday Trans 80:941–947CrossRefGoogle Scholar
  48. Tominaga T, Matsumoto S, Ishii T (1986) Limiting interdiffusion of some aromatic hydrocarbons in water from 265 to 433 K. J Phys Chem 90:139–143CrossRefGoogle Scholar
  49. Tyn MT, Calus WF (1975) Temeperature and concentration dependance of mutual diffusion coefficients of some binary liquid systems. J Chem Eng Data 20:310–316CrossRefGoogle Scholar
  50. Umecky T, Kuga T, Funazukuri T (2006) Infinite dilution binary diffusion coefficients of several α-amino acids in water over a temperature range from (293.2 to 333.2) K with the Taylor dispersion technique. J Chem Eng Data 51:1705–1710CrossRefGoogle Scholar
  51. Umecky T, Omori S, Kuga T, Funazukuri T (2008) Effects of hydroxyl groups on binary diffusion coefficients of α-amino acids in dilute aqueous solutions. Fluid Phase Equilib 264:18–22CrossRefGoogle Scholar
  52. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270CrossRefGoogle Scholar
  53. Witherspoon PA, Saraf DN (1965) Diffusion of methane, ethane, propane and n-butane from 25 to 43°. J Phys Chem 69:3752–3755CrossRefGoogle Scholar
  54. Witherspoon PA, Saraf DN (1969) Correlation of diffusion coefficients for paraffin, aromatic, cycloparaffin hydrocarbons in water. Ind Eng Chem Fundam 8:589–591CrossRefGoogle Scholar
  55. Xia X, Hopke PK, Holsen TM, Crimmins BS (2011) Modeling toxaphene behavior in the great lakes. Sci Total Environ 409:792–799CrossRefGoogle Scholar
  56. Ye F, Jensen H, Larsen SW, Yaghmur A, Larsen C, Ostergaard J (2012) Measurement of drug diffusivities in pharmaceutical solvents using Taylor dispersion analysis. J Pharm Biomed Anal 61:176–183CrossRefGoogle Scholar
  57. Zhang QQ, Ying GG, Chen ZF, Liu YS, Liu WR, Zhao JL (2015) Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China. Sci Total Environ 520:39–48CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.CNRS, SIGMA Clermont, Institut de Chimie de Clermont-FerrandUniversité Clermont AuvergneClermont–FerrandFrance

Personalised recommendations