Advertisement

Assessment of groundwater salinity using GIS and multivariate statistics in a coastal Mediterranean aquifer

  • H. Ferchichi
  • M. F. Ben Hamouda
  • B. Farhat
  • A. Ben Mammou
Review
  • 106 Downloads

Abstract

The integration of the statistical approaches and GIS tools with the hydrogeological and geological contexts allowed the assessment of the processes that cause groundwater quality deterioration in the great important deltaic aquifer in the northeastern Tunisia (Medjerda Lower Valley Aquifer). The spatial variation of the groundwater parameters and the molar ratio (Cl/Br) were also used to determine the possible impacts from seawater intrusion and from the septic tank leachate. Sixty shallow groundwater samples were collected in 2014 and analyzed for major and trace ions over an area of about 1090 km2 to determine the suitability for drinking or agricultural purposes. The total dissolved solids (TDS) content ranges from 1005 to 19,254 mgl−1 with a mean value of 3477.18 mgl−1. The chemistry is dominated by the sodium–chloride waters (55%). Mapping of TDS, Cl, Na+, SO42− and NO3 using kriging method shows a clear increase in salinity toward the coastline accompanied by Na+ and Cl increase which may be related to seawater intrusion and halite dissolution. Locally, higher nitrate concentration is related to the agricultural activities inducing contribution of chemical fertilizers and irrigation with treated wastewater. The saturation indices indicate that all carbonate minerals tend to reach saturation equilibrium confirming water–rock interactions, while evaporitic minerals are still in sub-saturation state and may increase the salinity of the groundwater. The principal component analysis proves the occurrence of groundwater contamination principally by seawater intrusion in the factor I (74.15%) and secondary by an anthropogenic source in the factor II (10.35%).

Keywords

Groundwater salinization Hydrochemistry Geostatistics Coastal aquifer Tunisia 

Notes

Acknowledgements

The authors are very grateful to the Director of National Nuclear Research Institute for making funds available for this work. We also thank all the Technicians of the Isotope Hydrology and Geochemistry Unit, Technopark Sidi Thabet, Tunisia, for helping us during the sampling campaigns as well as the analysis.

References

  1. Abonoje Oyebog S, Ako Ako A, Elambo Nkeng G, Cheo Suh E (2012) Hydrogeochemical characteristics of some Cameroon bottled waters, investigated by multivariate statistical analyses. J Geochem Explor 112:118–130.  https://doi.org/10.1016/j.gexplo.2011.08.003 CrossRefGoogle Scholar
  2. Adams S, Tredoux G, Harris C, Titus R, Pietersen K (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241:91–103.  https://doi.org/10.1016/S0022-1694(00)00370-X CrossRefGoogle Scholar
  3. Alcala FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207.  https://doi.org/10.1016/j.jhydrol.2008.06.028 CrossRefGoogle Scholar
  4. Ammar B (1989) Etude de l’environnement de Tunis et de sa région en relation avec l’art de l’ingénieur en génie civil. Ph.D. dissertation, University of Science and Technology, LanguedocGoogle Scholar
  5. Andolsi M (2016) Caractérisations physico-chimiques des eaux thermales du Nord de la Tunisie et des boues préparées par intéraction eaux thermales-argiles et leurs applications. Ph.D. dissertation, University of Tunis El Manar, TunisiaGoogle Scholar
  6. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, RotterdamCrossRefGoogle Scholar
  7. Bahri A (1993) Évolution de la salinité dans un périmètre irrigué de la Basse Vallée de la Medjerda en Tunisie. Sci du sol 31(3):125–140Google Scholar
  8. Ben Ammar S, Taupin JD, Zouari K, Khouatmia M, Ben Assi M (2014) Etude géochimique et isotopique d’un aquifère phréatique côtier anthropisé: Nappe de Oussja-Ghar El Melah (Tunisie). In: Proceedings of FRIEND-Water 2014, hydrology in a changing world: environmental and human dimensions, Montpellier, France, October 2014 (IAHS Publ. 363, 269–275, 2014)Google Scholar
  9. Ben Ammar S, Taupin JD, Zouari K, Khouatmia M (2016) Identifying recharge and salinization sources of groundwater in the Oussja Ghar el Melah plain (northeast Tunisia) using geochemical tools and environmental isotopes. Environ Earth Sci.  https://doi.org/10.1007/s12665-016-5431-x CrossRefGoogle Scholar
  10. Ben Hamouda MF, Kondash AJ, Lauer N, Mejri L, Tarhouni J, Vengosh A (2015) Assessment of groundwater salinity mechanisms in the coastal aquifer of El Haouaria, Northern Tunisia. In: 11th applied isotope geochemistry conference, AIG-11 BRGM. Procedia earth and planetary science, vol 13, pp 194–198.  https://doi.org/10.1016/j.proeps.2015.07.046 CrossRefGoogle Scholar
  11. Bodrud-Dozaa Md, Towfiqul Islam ARM, Ahmed Fahad, Dasd Samiran, Sahae Narottam, Safiur Rahmanf M (2016) Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci 30:19–40.  https://doi.org/10.1016/j.wsj.2016.05.001 CrossRefGoogle Scholar
  12. Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. J Hydrol 352:267–287.  https://doi.org/10.1016/j.jhydrol.2008.01.022 CrossRefGoogle Scholar
  13. Boutib L (1998) Tectonique de la région du Grand Tunis: évolution géométrique et cinématique des blocs structuraux du Mésozoique à l’actuel (Atlas nord oriental de la Tunisie). Ph.D. dissertation, Université TunisGoogle Scholar
  14. Bureau de Recherche Géologique et Minière (BRGM) (2001) Contribution à la caractérisation des états de références géochimiques des eaux souterraines. Rapport d’avancement no1 Etude bibliographique, Etude réalisée dans le cadre des opérations de service public du BRGM 00EAU714, BRGM/RP-50403-FRGoogle Scholar
  15. Capaccioni B, Didero M, Paletta C, Idero L (2005) Saline intrusion and refreshening in a multilayer coastal aquifer in the catania Plain (Sicily, Southern Italy): dynamics of degradation processes according to hydrochemical characteristics of groundwaters. J Hydrol 307:1–16.  https://doi.org/10.1016/j.jhydrol.2004.08.037 CrossRefGoogle Scholar
  16. Charfi S, Zouari K, Feki S, Mami E (2013) Study of variation in groundwater quality in a coastal aquifer in north-eastern Tunisia using multivariate factor analysis. Quatern Int 302:199–209.  https://doi.org/10.1016/j.quaint.2012.11.002 CrossRefGoogle Scholar
  17. Chenini I, Zghibi A, Kouzana L (2015) Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: state of the art and a case study. J Afr Earth Sci 109:11–26.  https://doi.org/10.1016/j.jafrearsci.2015.05.008 CrossRefGoogle Scholar
  18. Davis JC (1986) Statistics and data analysis in geology. Wiley, New York, p 621pGoogle Scholar
  19. Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350CrossRefGoogle Scholar
  20. De Montety V, Radakovitch O, Vallet-Coulomb C, Blavoux B, Hermitte D, Valles V (2008) Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: case of the Rhône delta (Southern France). Appl Geochem J.  https://doi.org/10.1016/j.apgeochem.2008.03.011 CrossRefGoogle Scholar
  21. El Guarouani A, Jabrane R, Bousemma, Merzouk A (1999) Contribution de l’imagerie satellitaire à la détection des zones saturée et au zonage de l’Evapotranspiration dans la basse vallée de la Medjerda (Tunisie). Sécheresse no 2 10(2):117–122Google Scholar
  22. E.U. (1991) Council directive 1991/676/EEC, of 12 December 1991, concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off J Eur Union 375:1–8Google Scholar
  23. Fakir Y, Zerouali A, Aboufirassi M, Bouabdelli M (2001) Exploitation et salinité des aquifères de la Chaouia côtière, littoral atlantique, Maroc. J Afr Earth Sci 32(4):791–801.  https://doi.org/10.1016/S0899-5362(02)00055-6 CrossRefGoogle Scholar
  24. Farhat B, Ben Mammou A, Kouzana L, Chenini I, Podda F, De Giudici G (2010) Groundwater chemistry of the Mornag aquifer system in NE Tunisia. Resour Geol 4:377–388.  https://doi.org/10.1111/j.1751-3928.2010.00142.x4 CrossRefGoogle Scholar
  25. Fidelibus MD, Tulipano L (1996) Regional flow of intrusing sea water in the carbonate aquifers of Apulia (Southern Italy). In: Proceedings of the 14th salt water intrusion meeting, vol 87, pp 230–241Google Scholar
  26. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood CliffsGoogle Scholar
  27. Gi-Tak C, Kangjoo K, Seong T, Kyoung H, Soon O, Byoung Y, Hyoung S, Chul W (2004) Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chemosphere 55:369–378.  https://doi.org/10.1016/j.chemosphere.2003.11.001 CrossRefGoogle Scholar
  28. Grava ME (2005) Hydrochemical, hydrogeological and geostatistical analysis of Eastern Cape Bon Aquifer (Northern Tunisia). Diplome postgrade d’hydrogéologue, Formation spécialisée en hydrogéologie. Centre d’Hydrogéologie de l’Université de Neuchâtel, SuisseGoogle Scholar
  29. Holly A, Michael Ann-Mulligan E, Charles-Harvey F (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436:1145–1148.  https://doi.org/10.1038/nature03935 CrossRefGoogle Scholar
  30. Institut National de Météorologie (INM) (2015) Données climatiques sur le Nord Est de la Tunisie. Rapport interne. http://www.meteo.tn/default.html
  31. Jia H, Liang S, Zhang Y (2015) Assessing the impact on groundwater safety of inter-basin water transfer using a coupled modeling approach. Front Environ Sci Eng 9(1):84–95.  https://doi.org/10.1007/s11783-014-0741-2 CrossRefGoogle Scholar
  32. Kacem J (2004) Etude sismotectonique et évaluation de l’aléa sismique régional du Nord-Est de Tunis : Apport de la sismique réflexion dans l’identification des sources sismogéniques. Thèse de Doctorat, Université Tunis el ManarGoogle Scholar
  33. Kaliraj S, Chandrasekar N, Magesh NS (2014) Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci.  https://doi.org/10.1007/s12517-013-0849-x CrossRefGoogle Scholar
  34. Katz BG, Eberts SM, Kauffman LJ (2011) Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. J Hydrol 397:151–166.  https://doi.org/10.1016/j.jhydrol.2010.11.017 CrossRefGoogle Scholar
  35. Kim Y, Lee KS, Koh DC, Lee DH, Lee SG, Park WB, Koh GW, Woo NC (2003) Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. J Hydrol 270:282–294.  https://doi.org/10.1016/S0022-1694(02)00307-4 CrossRefGoogle Scholar
  36. Kouzana L, Ben Mammou A, Sfar-Felfoul M (2009) Seawater intrusion and associated processes: case of the Korba aquifer (Cap-Bon, Tunisia). CR Geosci 341:21–35.  https://doi.org/10.1016/j.crte.2008.09.008 CrossRefGoogle Scholar
  37. Lee JY, Song SH (2007) Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ Geol 52:1231–1242.  https://doi.org/10.1007/s00254-006-0560-2 CrossRefGoogle Scholar
  38. Loucks DP, Jia H (2012) Managing water for life. Front Environ Sci Eng 6(2):255–264.  https://doi.org/10.1007/s11783-011-0359-6 CrossRefGoogle Scholar
  39. Machiwal D, Jha MK (2015) Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. J Hydrol Reg Stud 4:80–110.  https://doi.org/10.1016/j.ejrh.2014.11.005 CrossRefGoogle Scholar
  40. Masoud AA (2014) Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. J Afr Earth Sci 95:123–137.  https://doi.org/10.1016/j.jafrearsci.2014.03.006 CrossRefGoogle Scholar
  41. Mejri L (2012) Tectonique Quaternaire, paléoseismicité et sources seismogéniques en Tunisie Nord-Orientale: Etude de la faille d’Utique. Thèse de Doctorat. Université de Toulouse 3 Paul SabattierGoogle Scholar
  42. Melki F (1997) Tectonique de l’extrémité nord-est de la Tunisie (Bizerte-Menzel Bourguiba-Mateur). Evolution tectonique de blocs structuraux du Crétacé supérieur au Quaternaire. Thèse de Doctorat, Université Tunis IIGoogle Scholar
  43. Molla MA, Saha N, Salam SA, Rakib-uz-Zaman M (2015) Surface and groundwater quality assessment based on multivariate statistical techniques in the vicinity of Mohanpur, Bangladesh. Int J Environ Health Eng 4:18.  https://doi.org/10.4103/2277-9183.157717 CrossRefGoogle Scholar
  44. Montety VD, Radakovitch O, Vallet-Coulomb C, Blavoux B, Hermitte D, Valles V (2008) Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer, Case of the Rhône delta (Southern France). Appl Geochem 23:2337–2349.  https://doi.org/10.1016/j.apgeochem.2008.03.011 CrossRefGoogle Scholar
  45. Morell I, Gimhez E, Esteller MV (1996) Application of principal components analysis to the study of salinization on the Castellon Plain (Spain). Sci Total Environ, 177, 161–171. SSDI 0048-9697 (95) 04893-6CrossRefGoogle Scholar
  46. Ouerghi S (2014) Intégration des données multisources (Géologiques, sismologiques, géophysiques et géomorphomètriques) dans un environnement SIG pour l’analyse structurale du Nord Est de la Tunisie. Thèse de Doctorat, Université de Sfax, Ecole Nationale d’Ingénieurs de SfaxGoogle Scholar
  47. Papatheodorou G, Lambrakis N, Panagopoulos G (2007) Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrol Process 21:1482–1495.  https://doi.org/10.1002/hyp.6322 CrossRefGoogle Scholar
  48. Park SC, Yun ST, Chae GT, Yoo IS, Shin KS, Heo CH, Lee SK (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol 313(3–4):182–194.  https://doi.org/10.1016/j.jhydrol.2005.03.001 CrossRefGoogle Scholar
  49. Pini S, Kchouk F, Jauzein A (1971) Carte géologique au 1/50000 et notice explicative de l’Ariana. Notes du service Géologique de TunisieGoogle Scholar
  50. Pulido-Leboeuf P (2004) Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Appl Geochem 19:1517–1527.  https://doi.org/10.1016/j.apgeochem.2004.02.004 CrossRefGoogle Scholar
  51. Richter BC, Kreitler CW (1991) Identification of Sources of Ground-Water Salinization using Geochemical Techniques. U.S. Environmental Protection, Washington, D.C.  https://doi.org/10.2113/11.2.107 CrossRefGoogle Scholar
  52. Ruiz F, Gomis V, Blasco P (1990) Application of factor analysis to the hydrogeochemical study of a coastal aquifer. J Hydrol 119:169–177.  https://doi.org/10.1016/0022-1694(90)90041-U CrossRefGoogle Scholar
  53. Samaali H (2011) Etude de l’évolution de l’occupation et de l’utilisation du sol dans le delta de Medjerda par télédétection et systèmes d’Information Géographiques. Doct. Es-Sciences, Université de Tunis, Faculté des Sciences Humaines et Sociales, TunisieGoogle Scholar
  54. Samsudin AR, Haryono A, Hamzah U, Rafek AG (2008) Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: a case study from north Kelantan, Malaysia. Environ Geol J.  https://doi.org/10.1007/s00254-007-1124-9 CrossRefGoogle Scholar
  55. Sekiou F, Kellil A (2014) Caractérisation et classification empirique, graphique et statistique mutivariable d’eaux de source embouteillées de l’Algérie, Larhyss J. 225–246. http://dspace.univ-biskra.dz:8080/jspui/handle/123456789/4204
  56. Selvam S, Manimaran G, Sivasubramanian P, Balasubramanian N, Seshunarayana T (2014) GIS-based Evaluation of Water Quality Index of groundwater resources around Tuticorin coastal city, south India. Environ Earth Sci.  https://doi.org/10.1007/s12665-013-2662-y CrossRefGoogle Scholar
  57. Stigter TY, Van-Ooijen SPJ, Popst VEA, Appelo CAJ, Carvalho AMMD (1998) A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J Hydrol 208:262–279.  https://doi.org/10.1016/S0022-1694(98)00168-1 CrossRefGoogle Scholar
  58. Tringali C, Re V, Siciliano G et al (2017) Insights and participatory actions driven by a socio-hydrogeological approach for groundwater management: the Grombalia Basin case study (Tunisia). Hydrogeol J.  https://doi.org/10.1007/s10040-017-1542-z CrossRefGoogle Scholar
  59. USSL (United States Salinity Laboratory Staff) (1954) Diagnosis and improvement of saline and alkali soils, hand book 60. US Department of Agricultural Soils, US Department of Agricultural (USDA), Washington, pp 69–81Google Scholar
  60. World Health Organization (WHO) (2004) Guidelines for drinking water quality, vol 1, recommendations. WHO, Geneva, pp 145–220Google Scholar
  61. Zghibi A, Zouhri L, Tarhouni J, Kouzana L (2012) Groundwater mineralization processes in Mediterranean semiarid systems (Cap-Bon, North east of Tunisia): hydrogeological and geochemical approaches. Hydrol Proces.  https://doi.org/10.1002/hyp.9456 CrossRefGoogle Scholar
  62. Zghibi A, Tarhouni J, Zouhri L (2013) Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia). J Afr Earth Sci 87:1–12.  https://doi.org/10.1016/j.jafrearsci.2013.07.009 CrossRefGoogle Scholar
  63. Zghibi A, Merzougui A, Zouhri L, Tarhouni J (2014) Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-east of Tunisia). J Afr Earth Sci 89:1–15.  https://doi.org/10.1016/j.jafrearsci.2013.09.004 CrossRefGoogle Scholar
  64. Zouhri L, Carlier E, Ben Kabbour B, Toto EA, Gorini C, Louche B (2008) Groundwater interaction in the coastal environment: hydrochemical, electrical and seismic approaches. Bull Eng Geol Environ 67:123–128.  https://doi.org/10.1007/s10064-007-0101-6 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  • H. Ferchichi
    • 1
  • M. F. Ben Hamouda
    • 2
  • B. Farhat
    • 1
  • A. Ben Mammou
    • 1
  1. 1.Faculty of Sciences of Tunis, Department of Geology, Mineral Resources and Environment Laboratory (LRME)University of Tunis El ManarTunisTunisia
  2. 2.UMTN, Isotope Hydrology and Geochemistry UnitCNSTNSidi ThabetTunisia

Personalised recommendations