Advertisement

Phytodesalination of saline water using Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens

  • Md. S. IslamEmail author
  • M. Md. L. Hosen
  • Md. N. Uddin
Original Paper
  • 67 Downloads

Abstract

A hydroponic experiment has been conducted for desalination of saline water by culturing Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens at 0–7 dS m−1 salinity level. Water samples were collected at 15-day interval, and the plants were harvested after 45 days. They were separated into root, stem and leaf. EC value decreased in water with increasing time for all halophytes. Root and leaf contain higher amounts of sodium as compared with those of stem. The highest accumulation of sodium was found in the root of A. philoxeroides (145.63 g kg−1); however, I. aquatic has high phytodesalination capacity (130 kg Na+ ha−1) due to high productivity than A. philoxeroides (105 kg Na+ ha−1) and L. adscendens (80 kg Na+ ha−1). Bio-concentration factors (56.10–80.29) and translocation factor values (˃ 1) indicated that these halophytes were good sodium accumulator. Sodium adsorption ration values lied between 16.8–18 at 3 dS m−1 and 20–25.5 at 5 and 7 dS m−1 showed that these halophytes improved the water quality for irrigation. Anatomical variation from microscopic cellular images illustrated that spongy mesophyll cells along with sub-stomatal cells in leaf and xylem vessels along with vacuolar sequestration might be responsible for Na accumulation in the stem of these halophytes.

Keywords

Halophyte Desalination Salinity Sodium Uptake 

Notes

Acknowledgements

This research was partially supported by Patuakhali Science and Technology University, Bangladesh (Grant No. PSTU/RTC-B/01/15/03), and International Foundation for Science (IFS), Sweden (Grant No. C/5867-1).

References

  1. Abdelly C, Lachaâl M, Grignon C, Soltani A, Hajji M (1995) Association épisodique d’halophytes strictes et de glycophytes dans un écosystème hydromorphe salé en zone semi-aride. Agronomie 15(9–10):557–568CrossRefGoogle Scholar
  2. Abhilash PC, Vimal CP, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170:791–797CrossRefGoogle Scholar
  3. AMTA (2007) Water desalination processes. Improving America’s waters through membrane treatment and desalting. American Membrane Technology Association 2409 SE Dixie Hwy, Stuart, Florida 34996Google Scholar
  4. Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740CrossRefGoogle Scholar
  5. Blumwald E, Poole RJ (1985) Na(+)/H(+) antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167CrossRefGoogle Scholar
  6. Carillo P, Grazia Annunziata M, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, pp 21–38Google Scholar
  7. Chakraborty SK (2013) Interactions of environmental variables determining the biodiversity of coastal-mangrove ecosystem of West Bengal, India. Development 25:27Google Scholar
  8. Dajic Z (1996) Studija halofitske zajednice Puccinellietum limosae (Rapcs.) Wend. (Ecological study of halophytic community Puccinellietum limosae (Rapcs.) Wend.) Doctoral dissertation, Faculty of Biology, University of BelgradeGoogle Scholar
  9. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963CrossRefGoogle Scholar
  10. Gupta SS, Nayek RN, Satpati SS (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739CrossRefGoogle Scholar
  11. Hajibagheri MA, Hall JL, Flowers TJ (1984) Stereological analysis of leaf cells of the halophyte Suaeda maritime L. dum. J Exp Bot 35(10):1547–1557CrossRefGoogle Scholar
  12. Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63CrossRefGoogle Scholar
  13. Hoagland DR, Arnon DI (1950) The Water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:32 2nd Ed Google Scholar
  14. Islam MS, Ueno Y, Sikder MT, Kurasaki M (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J.F. Gmel) S.F. blake as a hyperaccumulator. Int J Phytoremediation 15(10):1010–1021CrossRefGoogle Scholar
  15. Islam MS, Saito T, Kurasaki M (2015) Phytofiltration of arsenic and cadmium using Micranthemum umbrosum: phytotoxicity, uptake kinetics and mechanism. Ecotoxicol Environ Safe 112:193–200CrossRefGoogle Scholar
  16. Islam MS, Sikder MT, Kurasaki M (2017) Potential of Micranthemum umbrosum for phytofiltration of organic arsenic species from oxic water environment. Int J Environ Sci Technol 14(2):285–290CrossRefGoogle Scholar
  17. Jlassi A, Zorrig W, Khouni AE, Lakhdar A, Smaoui A, Abdelly C, Rabhi M (2013) Phytodesalination of a moderately-salt-affected soil by Sulla carnosa. Int J Phytoremediation 15:398–404CrossRefGoogle Scholar
  18. Lesch SM, Suarez DL (2009) A short note on calculating the adjusted SAR index. Am Soc Agric Biol Eng 52(2):493–496Google Scholar
  19. Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660CrossRefGoogle Scholar
  20. Rabhi M, Hafsi C, Lakhdar A, Hajji S, Barhoumi Z, Hamrouni MH, Abdelly C, Smaoui A (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under non-leaching conditions. Afr J Ecol 47:463–468CrossRefGoogle Scholar
  21. Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828CrossRefGoogle Scholar
  22. Rabhi M, Atia A, Abdelly C, Smaoui A (2016) New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. J Theor Biol 383:7–11CrossRefGoogle Scholar
  23. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39(10):2661–2664CrossRefGoogle Scholar
  24. Robinson B, Kim N, Maechetti M, Moni C, Schroeter L, ven den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215CrossRefGoogle Scholar
  25. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221CrossRefGoogle Scholar
  26. Shelef O, Gross B, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976CrossRefGoogle Scholar
  27. Snyder KVW (2006) Removal of arsenic from drinking water by water hyacinths (Eichhornia crassipes). JUS SJWP 1:41–58CrossRefGoogle Scholar
  28. Todd DK (1980) Groundwater hydrology, 2nd edn. Willey, New York, pp 267–315Google Scholar
  29. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721CrossRefGoogle Scholar
  30. Zhao KF, Fan H, Song J, Sun MX, Wang BZ, Zhang SQ, Ungar IA (2005) Two Na+ and Cl hyperaccumulators of the Chenopodiaceae. J Integr Plant Biol 47(3):311–318CrossRefGoogle Scholar
  31. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  • Md. S. Islam
    • 1
    Email author
  • M. Md. L. Hosen
    • 1
  • Md. N. Uddin
    • 1
  1. 1.Department of Agricultural ChemistryPatuakhali Science and Technology UniversityDumki, PatuakhaliBangladesh

Personalised recommendations