Dispersion of metal(loid)s in fluvial sediments: an example from the Linares mining district (southern Spain)

  • U. CortadaEmail author
  • M. C. Hidalgo
  • J. Martínez
  • J. Rey
Original Paper


A study of the trace elements distribution in sediments along the main watercourse of the Linares mining district (Jaen, Spain) was carried out. For this purpose, 56 soil samples were collected in the stream channel and floodplain. To obtain a geochemical characterisation of the soil, the pH, organic matter and the silt–clay fraction were measured and 33 elements were analysed. The results derived from these measurements were studied statistically and compared to the reference values for soils standards under two different regulations. This made it possible to recognise the dispersion patterns of the different metals and metalloids associated with the old mining activity of the district and to characterise the effects of the various pollution sources along the watercourse. An elevated Pb content was detected, which was associated with tailings ponds and waste rock dumps. Similarly, high concentrations of As in sediments were identified, which were associated with a smelter located at the headwater of the catchment area.


Fluvial deposits Mines Multivariate statistics Polluted soils Trace elements 



This research was funded by the Spanish Ministry of Economy and Competitiveness (Project CGL2013-45485-R, co-financed FEDER) and by the Government of Junta de Andalucía (Project RNM 05959).


  1. Azcárate JE (1977) Mapa geológico y memoria explicativa de la hoja 905 (Linares), escala 1:50.000. Instituto Geológico y Minero de España p 35Google Scholar
  2. Azcárate JE, Argüelles A (1971) Evolución Tectónica y estructuras filonianas en el distrito minero de Linares. Congreso Hispano-Luso-Americano de Geología Económica. Madrid, Tomo I, Sección 4, pp 17–32Google Scholar
  3. Bianchini F, Pascali G, Campo A, Orecchio S, Bonsignore R, Blandino P, Pietrini P (2015) Elemental contamination of an open-pit mining area in the Peruvian Andes. Int J Environ Sci Technol 12:1065CrossRefGoogle Scholar
  4. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu ChW, López D, Armienta MA, Guilherme L, Gomez A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35CrossRefGoogle Scholar
  5. Chae Jung M (2001) Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea. Appl Geochem 16:1369–1386CrossRefGoogle Scholar
  6. Chae Jung M (2008) Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea. Environ Geochem Hlth 30:205–217CrossRefGoogle Scholar
  7. Chopin EIB, Alloway BJ (2007) Trace element partitioning and soil particle characterization around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Sci Total Environ 373:488–500CrossRefGoogle Scholar
  8. Chopin E, Black S, Hodson ME, Coleman ML, Alloway BJ (2003) A preliminary investigation into mining and smelting impacts on trace element concentrations in the soils and vegetation around Tharsis, SW Spain. Miner Mag 67:279–288CrossRefGoogle Scholar
  9. Cortada U, Martínez J, Rey J, Hidalgo MC, Sandoval S (2017) Assessment of tailings pond seals using geophysical and hydrochemical techniques. Eng Geol 223:59–70CrossRefGoogle Scholar
  10. Davies E, Bailinger R (1990) Heavy metals in soils in north Somerset, England, with special reference to contamination from base metal mining in the Mendips. Environ Geochem Hlth 12:291–300CrossRefGoogle Scholar
  11. Domínguez MT, Alegre JM, Madejón P, Madejón E, Burgos P, Cabrera F, Marañón T, Murillo JM (2016) River banks and channels as hotspots of soil pollution after large-scale remediation of a river basin. Geoderma 261:133–140CrossRefGoogle Scholar
  12. Dudka S, Piotrowska M, Chlopecka A, Witek T (1995) Trace metal contamination of soils and crop plants by the mining and smelting industry in Upper Silesia, South Poland. J Geochem Explor 52:237–250CrossRefGoogle Scholar
  13. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118Google Scholar
  14. Elouear Z, Bouhamed F, Boujelben N, Bouzid J (2016) Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mine, NE Tunisia. Environ Earth Sci 75:254CrossRefGoogle Scholar
  15. ESDAT, 2013. Dutch target and intervention values, 2000 (the NewDutch list). VROM: Former Ministry of Housing, Spatial Planning and the Environment (presently Ministry of Infrastructure and the EnvironmentGoogle Scholar
  16. Ettler V (2016) Soil contamination near non-ferrous metal smelters: a review. Appl Geochem 64:56–74CrossRefGoogle Scholar
  17. Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324CrossRefGoogle Scholar
  18. Fontboté JM (1982) Mapa geológico y memoria explicativa de la hoja 70 (Linares), escala 1:200.000. Instituto Geológico y Minero de España, MadridGoogle Scholar
  19. Gäbler HE, Schneider J (2000) Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environ Geol 39(7):774–782CrossRefGoogle Scholar
  20. García MM, Moreno-Grau S, García JM, Moreno J, Bayo J, Perez JG, Moreno-Clavel J (2001) Distribution of the metals lead, cadmium, copper, and zinc in the top soil of Cartagena, Spain. Water Air Soil Pollut 131:329–347CrossRefGoogle Scholar
  21. Gomez-González MA, Garcia-Guinea J, Laborda F, Garrido F (2015) Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain). Sci Total Environ 536:268–278CrossRefGoogle Scholar
  22. Gomez-Ros JM, Garcia G, Peñas JM (2013) Assessment of restoration success of former metal mining areas after 30 years in a highly polluted Mediterranean mining area: Cartagena-La Unión. Ecol Eng 57:393–402CrossRefGoogle Scholar
  23. Gratton WS, Nkongolo KK, Spiers GA (2000) Heavy metal accumulation in soil and Jack pine (pinus Banksiana) needles in Sudbury, Ontario, Canada. Bull Environ Contam Toxicol 64:550–557CrossRefGoogle Scholar
  24. Gutiérrez-Guzmán J (1999) Las minas de Linares. Apuntes históricos. Colegio Oficial de Ingenieros Técnicos de Minas de Linares, Linares, p 667Google Scholar
  25. Herbet RB (1997) Partitioning of heavy metals in podzol soils contaminated by mine drainage waters, Dalarna, Sweden. Water Air Soil Pollut 96:39–59Google Scholar
  26. Hidalgo MC, Rojas D, Benavente J, Rey J, Martínez J, De La Torre MJ (2014) Contaminación de aguas y suelos en el entorno de una escombrera de fundición (Distrito Minero de Linares, Jaén). II Segundo Congreso Ibérico de las Aguas Subterráneas (CIAS2014), pp 425–426Google Scholar
  27. Hürkamp K, Raab T, Völkel J (2009) Lead pollution of floodplain soils in a historic mining area-age, distribution and binding forms. Water Air Soil Pollut 201:331–345CrossRefGoogle Scholar
  28. Ji K, Kim J, Lee M, Park S, Kwon HJ, Cheong HK et al (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ Pollut 178:322–328CrossRefGoogle Scholar
  29. Junta de Andalucía RD 18/2015 (2015) Boletín Oficial de la Junta de Andalucía. Consejería de Medio Ambiente, MadridGoogle Scholar
  30. Kilbride C, Poole J, Hutchings TR (2006) A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICPeOES and ex situ field portable X-ray fluorescence analyses. Environ Pollut 143:16–23CrossRefGoogle Scholar
  31. Lee CS, Li X, Shi W, Cheung SC, Thornton I (2006) Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61CrossRefGoogle Scholar
  32. Liénard A, Brostaux Y, Colinet G (2014) Soil contamination near a former Zn–Pb ore-treatment plant: evaluation of deterministic factors and spatial structures at the landscape scale. J Geochem Explor 147:107–116CrossRefGoogle Scholar
  33. Lillo FJ (1992) Geology and geochemistry of Linares-La Carolina Pb-ore field (Southeastern border of the Hesperian Massif). Ph.D. thesis, University of LeedsGoogle Scholar
  34. Liu J, Wang J, Chen Y, Xie Y, Qi J, Lippold H, Luo D, Wang C, Su L, He L, Wu Q (2016) Thallium transformation and partitioning during Pb–Zn smelting and environmental implications. Environ Pollut 212:77–89CrossRefGoogle Scholar
  35. Martínez J (2002) Caracterización geoquímica y ambiental de los suelos en el sector minero de Linares. Ph.D. Thesis, Universidad Politécnica de MadridGoogle Scholar
  36. Martínez J, Llamas JF, De Miguel E, Rey J, Hidalgo MC (2007) Determination of the geochemical background in a metal mining site: example of the mining district of Linares (South Spain). J Geochem Explor 94:19–29CrossRefGoogle Scholar
  37. Martínez J, Llamas JF, De Miguel E, Rey J, Hidalgo MC (2008a) Soil contamination from urban and industrial activity: example of the mining district of Linares (southern Spain). Environ Geol 54:669–677CrossRefGoogle Scholar
  38. Martínez J, Llamas JF, De Miguel E, Rey J, Hidalgo MC (2008b) Multivariate analysis of contamination in the mining district of Linares (Jaen, Spain). Appl Geochem 23:2324–2336CrossRefGoogle Scholar
  39. Mleczek M, Rutkowski P, Niedzielski P, Goliński P, Gąsecka M, Kozubik T, Dąbrowski J, Budzyńska S, Pakuła J (2016) The role of selected tree species in industrial sewage sludge/flotation tailing management. Int J Phytoremediat 18(11):1086–1095CrossRefGoogle Scholar
  40. Nieto JM, Sarmiento AM, Olías M, Cánovas CR, Riba I, Kalman J, Angel Delvalls T (2007) Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environ Int 33:445–455CrossRefGoogle Scholar
  41. Nováková T, Kotková K, Elznicová J, Strnad L, Engel Z, Matys Grygar T (2015) Pollutant dispersal and stability in a severely polluted floodplain: a case study in the Litavka River, Czech Republic. J Geochem Explor 156:131–144CrossRefGoogle Scholar
  42. Peinado F, Ruano S, González M, Molina C (2010) A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma 159(1–2):76–82CrossRefGoogle Scholar
  43. Pekey H (2006) The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar Pollut Bull 52:1197–1208CrossRefGoogle Scholar
  44. Ratha DS, Sahu BK (1993) Source and distribution of metals in urban soils of Bombay, India, using multivariate statistical techniques. Environ Geol 22:276–285CrossRefGoogle Scholar
  45. Rojas D, Benavente J, Hidalgo MC, Rey J, Martínez J (2012) Contenido total y fraccionamiento de metales y semimetales en las escombreras del distrito minero de Linares-La Carolina (Jaén). Geotemas 13:1495–1498Google Scholar
  46. Scheinert M, Kupsch H, Bletz B (2009) Geochemical investigations of slags from the historical smelting in Freiberg, Erzgebirge (Germany). Chem Erde 69(1):81–90CrossRefGoogle Scholar
  47. Schmid Th, Rico C, Rodríguez-Rastrero M, Sierra MJ, Díaz-Puente MJ, Pelayo M, Millán R (2013) Monitoring of the mercury mining site Almadén implementing remote sensing technologies. Environ Res 125:92–102CrossRefGoogle Scholar
  48. Schneider AR, Morvan X, Saby NPA, Cancès B, Ponthieu M, Gommeaux M, Marin B (2016) Multivariate spatial analyses of the distribution and origin of trace and major elements in soils surrounding a secondary lead smelter. Environ Sci Pollut R 23(15):15164–15174CrossRefGoogle Scholar
  49. Stockmann M, Hirsch D, Lippmann-Pipke J, Kupsch H (2013) Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany. Environ Earth Sci 68(4):1153–1168CrossRefGoogle Scholar
  50. U.S. EPA (1998) Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment Method 6200Google Scholar
  51. Vaněk A, Chrastný V, Komárek M, Penížek V, Teper L, Cabala J, Drábek O (2013) Geochemical position of thallium in soils from a smelter-impacted area. J Geochem Explor 124:176–182CrossRefGoogle Scholar
  52. Veado MA, Arantes IA, Oliveira AH, Almeida MR, Miguel MI, Severo MI, Cabaleiro HL (2006) Metal pollution in the environment of Minas Gerais State—Brazil. Environ Monit Assess 117:157–172CrossRefGoogle Scholar
  53. Wang S, Wang Y, Zhang R, Wang W, Xuc D, Guo J, Li P, Yu K (2015) Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci Total Environ 532:645–654CrossRefGoogle Scholar
  54. Zhou J, Dang Z, Cai MF, Liu C (2007) Soil heavy metal pollution around the Dabaoshan Mine, Guangdong province, China. Pedosphere 17:588–594CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Department of GeologyLinares Scientific-Technological Campus, University of JaenJaénSpain
  2. 2.Department of Mechanical and Mining EngineeringLinares Scientific-Technological Campus, University of JaenJaénSpain

Personalised recommendations