Advertisement

Phytoplankton evolution during the creation of a biofloc system for shrimp culture

  • F. LlarioEmail author
  • M. Rodilla
  • J. Escrivá
  • S. Falco
  • M.-T. Sebastiá-Frasquet
Original Paper

Abstract

Microalgae play a key role in the dynamics of biofloc technology aquaculture systems. Some phytoplankton groups, such as diatoms, are desired for their high nutritional value and contribution to water quality. Other groups, such as cyanobacteria, are undesired because of their low nutritional value and capacity of producing toxins. So, monitoring the phytoplankton community structure and succession is key for managing biofloc systems. However, research on phytoplankton in these systems is scarce and mostly done by microscopy. The primary objective of this research was to estimate phytoplankton community structure in shrimp biofloc system water samples, using high-performance liquid chromatography methods and CHEMTAX software. The major groups present in our system were diatoms, euglenophytes, cyanobacteria and chlorophytes, while dinoflagellates were only remarkable at the initial period. We observed a clear dominance of diatoms all along the 5 months that comprised a complete biofloc system culture. The characteristic succession of autotrophic processes by heterotrophs of the biofloc systems was observed by the reduction of net primary production. Light intensity played a key role in determining the phytoplankton composition and abundance. Algal pigment analyses using high-performance liquid chromatography and subsequent CHEMTAX analysis in water samples were useful for estimating the phytoplankton community structure in the biofloc systems. However, we found some limitations when the biofloc system was in heterotrophic mode. Under these conditions, some dinoflagellates and cyanobacteria behaved as heterotrophs and lost or decreased their biomarker pigments. So, further research is needed to increase knowledge on the accuracy of high-performance liquid chromatography/CHEMTAX under these conditions.

Keywords

CHEMTAX High-performance liquid chromatography Litopenaeus vannamei Pigments 

Notes

Acknowledgements

Financial support for this research was provided by Conselleria d’Educació, Investigació, Cultura i Esport of the Generalitat Valenciana, through the program VALi+D, file number ACIF/2014/244. We would like to express our deepest thanks to Professor Luis Henrique da Silva Poersch of FURG (Universidade Federal do Rio Grande) and Ivan Vidal (Langostinos el Real) for his support. Finally, the authors wish to thank Le Gouessant and Michaël Metz for providing the commercial feed.

References

  1. Ahmed A, Kurian S, Gauns M, Chndrasekhararao AV, Mulla A, Naik B, Naik H, Naqvi SWA (2016) Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res 119:30–39.  https://doi.org/10.1016/j.csr.2016.03.005 CrossRefGoogle Scholar
  2. Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235.  https://doi.org/10.1016/S0044-8486(99)00085-X CrossRefGoogle Scholar
  3. Avnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147.  https://doi.org/10.1016/j.aquaculture.2006.11.025 CrossRefGoogle Scholar
  4. Avnimelech Y (2009) Biofloc technology. A practical guide book. The World Aquaculture Society, Baton RougeGoogle Scholar
  5. Azim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29–35.  https://doi.org/10.1016/j.aquaculture.2008.06.036 CrossRefGoogle Scholar
  6. Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, de Abreu L, Wasielesky WJ (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nutr 16:163–172.  https://doi.org/10.1111/j.1365-2095.2009.00648.x CrossRefGoogle Scholar
  7. Baloi M, Arantes R, Schveitzer R, Magnotti C, Vinatea L (2013) Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquac Eng 52:39–44.  https://doi.org/10.1016/j.aquaeng.2012.07.003 CrossRefGoogle Scholar
  8. Baumgarten MGZ, Wallner-Kersanach M, Niencheski LFH (2010) Manual de análises em oceanografia química. Furg, Rio GrandeGoogle Scholar
  9. Becerra-Dórame MJ, Martínez-Córdova LR, Martínez-Porchas M, Lopez-Elías JA (2011) Evaluation of autotrophic and heterotrophic microcosm- based systems on the production response of Litopenaeus vannamei intensively nursed without Artemia and with zero water exchange. Isr J Aquac Bamidgeh 63:7Google Scholar
  10. Brito LO, dos Santos IGS, de Abreu JL, de Araújo MT, Severi W, Gàlvez AO (2016) Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquac Res 47:3990–3997.  https://doi.org/10.1111/are.12849 CrossRefGoogle Scholar
  11. Campa-Córdova AI, Núñez-Vázquez EJ, Luna-González A, Romero-Geraldo MJ, Ascencio F (2009) Superoxide dismutase activity in juvenile Litopenaeus vannamei and Nodipecten subnodosus exposed to the toxic dinoflagellate Prorocentrum lima. Comp Biochem Physiol C Toxicol Pharmacol 149:317–322.  https://doi.org/10.1016/j.cbpc.2008.08.006 CrossRefGoogle Scholar
  12. Casé M, Leça EE, Leitão SN, SantAnna EE, Schwamborn R, de Moraes Junior AT (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352.  https://doi.org/10.1016/j.marpolbul.2008.02.008 CrossRefGoogle Scholar
  13. Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80.  https://doi.org/10.1016/S0044-8486(00)00540-8 CrossRefGoogle Scholar
  14. Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac Eng 59:48–54.  https://doi.org/10.1016/j.aquaeng.2014.02.002 CrossRefGoogle Scholar
  15. Duarte CM, Marrasé C, Vaqué D, Estrada M (1990) Counting error and the quantitative analysis of phytoplankton communities. J Plankton Res 12:295–304.  https://doi.org/10.1093/plankt/12.2.295 CrossRefGoogle Scholar
  16. Ebeling J, Timmons M, Bisogni J (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358.  https://doi.org/10.1016/j.aquaculture.2006.03.019 CrossRefGoogle Scholar
  17. El-Dahhar AA, Salama M, Elebiary EH (2015) Effect of energy to protein ratio in biofloc technology on water quality, survival and growth of mullet (Mugil cephalus). J Arab Aquac Soc 10:15–32.  https://doi.org/10.12816/0026633 CrossRefGoogle Scholar
  18. Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management. In: Tutu H (ed) water quality. InTech, Rijeka.  https://doi.org/10.5772/66416 Google Scholar
  19. Figueroa F, Niell F, Figueiras F, Villarino M (1998) Diel migration of phytoplankton and spectral light field in the Ria de Vigo (NW Spain). Mar Biol 130:491–499CrossRefGoogle Scholar
  20. Gaona CAP, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ (2011) The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int J Recirc Aquac.  https://doi.org/10.21061/ijra.v12i1.1354 Google Scholar
  21. Garrido JL, Airs RL, Rodríguez F, Van Heukelem L, Zapata M (2011) New HPLC separation techniques. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. University Press, Cambridge, pp 165–194CrossRefGoogle Scholar
  22. Ge H, Li J, Chang Z, Chen P, Shen M, Zhao F (2016) Effect of microalgae with semicontinuous harvesting on water quality and zootechnical performance of white shrimp reared in the zero water exchange system. Aquac Eng 72–73:70–76.  https://doi.org/10.1016/j.aquaeng.2016.04.006 CrossRefGoogle Scholar
  23. Godoy LC, Odebrecht C, Ballester E, Martins TG, Wasielesky WJ (2012) Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac Int 20:559–569.  https://doi.org/10.1007/s10499-011-9485-1 CrossRefGoogle Scholar
  24. Grasshoff K (1976) Methods of seawater analysis. Verlag Chemie: Weinstei, New YorkGoogle Scholar
  25. Green BW, Schrader KK, Perschbacher PW (2014) Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquac Res 45:1442–1458.  https://doi.org/10.1111/are.12096 CrossRefGoogle Scholar
  26. Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N (2017) Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J Appl Phycol 29:1781–1790.  https://doi.org/10.1007/s10811-017-1133-3 CrossRefGoogle Scholar
  27. Higgins HW, Wright SW, Schlüter L (2011) Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. Cambridge University Press, Cambridge, pp 257–313CrossRefGoogle Scholar
  28. Hooker S, Firestone E, Claustre H, Ras J (2001) The first SeaWiFS HPLC analysis round-robin experiment (SeaHARRE-1). https://ntrs.nasa.gov/search.jsp?R=20010072242. Accessed 19 July 2017
  29. Horabun T (1997) Relationships between water quality and phytoplankton in the Bangpakong river. http://agris.fao.org/agris-search/search.do?recordID=TH2000001898. Accessed 19 July 2017
  30. Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plankton Res 25:193–202.  https://doi.org/10.1093/plankt/25.2.193 CrossRefGoogle Scholar
  31. Jeffrey SW, Sielicki M, Haxo FT (1975) Chloroplast pigment patterns in dinoflagellates. J Phycol 11:374–384.  https://doi.org/10.1111/j.1529-8817.1975.tb02799.x Google Scholar
  32. Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91.  https://doi.org/10.1007/s12601-010-0007-2 CrossRefGoogle Scholar
  33. Jory DE, Cabrera TR, Dugger DM, Fegan D, Lee PG, Lawrence L, Jackson C, Mcintosh R, Castañeda J, International B, Park H, Hwy N, Pierce F (2001) A global review of shrimp feed management: status and perspectives. Aquaculture 318:104–152Google Scholar
  34. Ju ZY, Forster I, Conquest L, Dominy W, Kuo WC, Horgen FD (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39:118–133.  https://doi.org/10.1111/j.1365-2109.2007.01856.x CrossRefGoogle Scholar
  35. Kingston MB (1999) Effect of light on vertical migration and photosynthesis of Euglena proxima (euglenophyta). J Phycol 35:245–253.  https://doi.org/10.1046/j.1529-8817.1999.3520245.x CrossRefGoogle Scholar
  36. Latasa M, Scharek R, Vidal M, Vila-Reixach G (2010) Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar Ecol Prog Ser 40:27–42.  https://doi.org/10.3354/meps08559 CrossRefGoogle Scholar
  37. Li Y, Swift E, Buskey EJ (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (pyrrophyta). J Phycol 32:974–982.  https://doi.org/10.1111/j.0022-3646.1996.00974.x CrossRefGoogle Scholar
  38. Li A, Stoecker D, Adolf J (1999) Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat Microb Ecol 19:163–176.  https://doi.org/10.3354/ame019163 CrossRefGoogle Scholar
  39. Lin YC, Chen JC (2001) Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. J Exp Mar Biol Ecol 259:109–119.  https://doi.org/10.1016/S0022-0981(01)00227-1 CrossRefGoogle Scholar
  40. Lin YC, Chen JC (2003) Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224:93–201.  https://doi.org/10.1016/S0044-8486(03)00220-5 CrossRefGoogle Scholar
  41. Lohscheider JN, Strittmatter M, Küpper H, Adamska I, Heaney S, Cunningham C (2011) Vertical distribution of epibenthic freshwater cyanobacterial Synechococcus spp. Strains depends on their ability for photoprotection. PLoS ONE.  https://doi.org/10.1371/journal.pone.0020134 Google Scholar
  42. Lukwambe B, Qiuqian L, Wu J, Zhang D, Wang K, Zheng Z (2015) The effects of commercial microbial agents (probiotics) on phytoplankton community structure in intensive white shrimp (Litopenaeus vannamei) aquaculture ponds. Aquac Int 23:1443–1455.  https://doi.org/10.1007/s10499-015-9895-6 CrossRefGoogle Scholar
  43. Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283CrossRefGoogle Scholar
  44. Maicá PF, de Borba MR, Wasielesky WJ (2012) Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquac Res 43:361–370.  https://doi.org/10.1111/j.1365-2109.2011.02838.x CrossRefGoogle Scholar
  45. Manan H, Moh JHZ, Kasan NA, Suratman S, Ikhwanuddin M (2016) Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl Water Sci.  https://doi.org/10.1007/s13201-016-0421-4 Google Scholar
  46. Marinho YF, Brito LO, Campos S, Severi W, Andrade HA, Galvez AO (2016) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48:4155–4164.  https://doi.org/10.1111/are.13235 CrossRefGoogle Scholar
  47. Martins TG, Odebrecht C, Jensen LV, D’Oca MG, Wasielesky WJ (2016) The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquac Res 47:1315–1326.  https://doi.org/10.1111/are.12592 CrossRefGoogle Scholar
  48. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36.  https://doi.org/10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  49. Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac 6:48–61.  https://doi.org/10.1111/raq.12024 CrossRefGoogle Scholar
  50. Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986.  https://doi.org/10.1289/ehp.6903 CrossRefGoogle Scholar
  51. Paerl H, Tucker C (1995) Ecology of blue-green algae in aquaculture ponds. J World Aquac 26:109–131.  https://doi.org/10.1111/j.1749-7345.1995.tb00235.x CrossRefGoogle Scholar
  52. Pérez-Linares J, Ochoa JL, GagoMartínez A (2008) Effect of PSP toxins in white leg shrimp Litopenaeus vannamei Boone, 1931. J Food Sci 73:T69–T73.  https://doi.org/10.1111/j.1750-3841.2008.00710.x CrossRefGoogle Scholar
  53. Pérez-Morales A, Band-Schmidt CJ, Martínez-Díaz SF (2017) Mortality on zoea stage of the Pacific white shrimp Litopenaeus vannamei caused by Cochlodinium polykrikoides (Dinophyceae) and Chattonella spp. (Raphidophyceae). Mar Biol 164:57.  https://doi.org/10.1007/s00227-017-3083-3 CrossRefGoogle Scholar
  54. Ray AJ, Dillon KS, Lotz JM (2011) Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquac Eng 45:127–136.  https://doi.org/10.1016/j.aquaeng.2011.09.001 CrossRefGoogle Scholar
  55. Schlüter L, Lauridsen T, Krogh G (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios–a comparison between pigment analysis by HPLC and microscopy. Freshwater 51:1474–1485.  https://doi.org/10.1111/j.1365-2427.2006.01582.x/full CrossRefGoogle Scholar
  56. Schlüter L, Behl S, Striebel M, Stibor H (2016) Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshw Biol 61:1627–1639.  https://doi.org/10.1111/fwb.12803 CrossRefGoogle Scholar
  57. Schrader KK, Green BW, Perschbacher PW (2011) Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus). Aquac Eng 45:118–126.  https://doi.org/10.1016/j.aquaeng.2011.08.004 CrossRefGoogle Scholar
  58. Sebastiá M, Rodilla M (2013) Nutrient and phytoplankton analysis of a Mediterranean Coastal area. Environ Manage 51:225–240.  https://doi.org/10.1007/s00267-012-9986-3 CrossRefGoogle Scholar
  59. Sebastiá M, Rodilla M, Sanchis J, Altur V (2012) Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric Ecosyst Environ 152:10–20.  https://doi.org/10.1016/j.agee.2012.02.006 CrossRefGoogle Scholar
  60. Seoane S, Garmendia M, Revilla M, Borja Á, Franco J, Orive E, Valencia V (2011) Phytoplankton pigments and epifluorescence microscopy as tools for ecological status assessment in coastal and estuarine waters, within the Water Framework. Mar Pollut 62:1484–1497.  https://doi.org/10.1016/j.marpolbul.2011.04.010 CrossRefGoogle Scholar
  61. Sinden A, Sinang SC (2016) Cyanobacteria in aquaculture systems: linking the occurrence, abundance and toxicity with rising temperatures. Int J Environ Sci Technol 13:2855–2862.  https://doi.org/10.1007/s13762-016-1112-2 CrossRefGoogle Scholar
  62. Sospedra J, Niencheski LFH, Falco S, Andrade CF, Attisano KK, Rodilla M (2017) Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea). Oceanologia.  https://doi.org/10.1016/j.oceano.2017.07.004 Google Scholar
  63. Strickland J (1960) Measuring the production of marine phytoplankton. Bull Fish Res Bd Canada 122:172Google Scholar
  64. Ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Écoscience 1:127–140.  https://doi.org/10.1080/11956860.1994.11682237 CrossRefGoogle Scholar
  65. Ter Braak C, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). http://library.wur.nl/WebQuery/wurpubs/wever/341885. Accessed 19 July 2017
  66. Utermohl M (1985) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Limnologie 9:1–38Google Scholar
  67. Van Wyk P, Scarpa J (1999) Water quality requirements and management. In: Institution Harbor Branch Oceanographic (ed) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Florida, pp 128–138Google Scholar
  68. Vinatea L, Gálvez AO, Browdy CL, Stokes A, Venero J, Haveman J, Lewis BL, Lawson A, Shuler A, Leffler JW (2010) Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquac Eng 42:17–24.  https://doi.org/10.1016/j.aquaeng.2009.09.001 CrossRefGoogle Scholar
  69. Wright S, Jeffrey S, Mantoura R (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:186–196CrossRefGoogle Scholar
  70. Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133.  https://doi.org/10.1007/s10811-008-9341-5 CrossRefGoogle Scholar
  71. Yusoff FM, Zubaidah MS, Matias HB, Kwan TS (2002) Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res 33:269–278.  https://doi.org/10.1046/j.1355-557x.2002.00671.x CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Institut d’Investigació per a la Investigació de Zones Costaneres (IGIC)Universitat Politècnica de ValènciaGrau de GandiaSpain

Personalised recommendations