Application of pyrogenic carbonaceous product for immobilisation of potentially toxic elements in railway sleepers and polluted soil

  • L. UsevičiūtėEmail author
  • E. Baltrėnaitė
Original Paper


In the last decades, there is a growing concern about soils polluted with potentially toxic elements (PTE) and their negative impact on the ecosystems. In the recent year, biochar is intensively investigated not only for carbon sequestration or soil productivity enhancement but also like a new sorbent for polluted soils’ remediation. The aim of this work is: (1) to assess the effect of two pine wood biochar types (produced at 450 and 700 °C temperatures) on the PTE mobility in the solution of the former sewage sludge soil; (2) to make risk assessment of pyrogenic carbonaceous product made from railway sleepers and (3) to assess pine wood biochar (700 °C) impact on the PTE uptake to oat (Avena sativa L.). Three different experiments were done: (1) incubation; (2) leaching and (3) bioaccumulation. Incubation experiment showed that both pine wood biochar types showed good immobilisation efficiency in the case of Cd (> 85%), but lower temperature biochar (450 °C) had higher efficiency used in the immobilisation of Zn (78%) and Cu (76%) in multi-polluted soil. Leaching experiment showed that both biochar types well retained Pb (> 99%), but lower temperature biochar had greater retention efficiency in the case of Cu (93%).


Pyrogenic carbonaceous product Leaching test Pine wood Potentially toxic elements Pyrolysis Soil pollution Immobilisation of elements 



The authors wish to thank all who assisted in conducting this work.


  1. Ahmad M, Lee SS, Lim JE, Lee SE, Cho JS, Moon DH, Hashimoto Y, Ok YS (2014) Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95:433–441CrossRefGoogle Scholar
  2. Al-Wabel MI, Usman AR, El-Naggar AH, Aly AA, Ibrahim HM, Elmaghraby S, Al-Omran A (2015) Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci 22:503–511CrossRefGoogle Scholar
  3. Amonette J, Joseph S (2009) Characteristics of biochar: micro chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 33–52Google Scholar
  4. An assessment of laboratory leaching tests for predicting the impacts of fill material on ground water and surface water quality 2003. A report for the legislature. Publication No. 03–09107Google Scholar
  5. Antal MJ, Gronli M (2003) The art, science and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRefGoogle Scholar
  6. Antonijevic MM, Maric M (2008) Determination of the content of heavy metals in pyrite contaminated soil and plants. Sensors 8(9):5857–5865CrossRefGoogle Scholar
  7. Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28CrossRefGoogle Scholar
  8. Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480CrossRefGoogle Scholar
  9. Beesley L, Moreno-Jiménez E, Gomex-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287CrossRefGoogle Scholar
  10. Beesley L, Moreno-Jiménez E, Gomex-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soil. Environ Pollut 159:3269–3282CrossRefGoogle Scholar
  11. Buss W, Masek O (2014) Mobile organic compounds in biochar—a potential source of contamination—phytotoxic effects on cress seed (Lepidium sativum) germination. J Environ Manag 137:111–119CrossRefGoogle Scholar
  12. Butkus D, Baltrėnaitė E (2007) Accumulation of heavy metals in tree seedlings from soil amended with sewage sludge. Ekologija 53(4):68–76Google Scholar
  13. Cao XD, Ma LN, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291CrossRefGoogle Scholar
  14. Cao XD, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and Atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889CrossRefGoogle Scholar
  15. Chaney RL, Giordano PM (1977) Microelements as related to plant deficiencies and toxicities. In: Elliott LF, Stevenson FJ (eds) Soils for management of organic wastes and waste waters. American Society of Agronomy, Madison, pp 233–280Google Scholar
  16. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143CrossRefGoogle Scholar
  17. Crombie K, Mašek O, Cross A, Sohi S (2014) Biochar-synergies and trade-offs between soil enhancing properties and C sequestration potential. Edinburgh Research Explorer, EdinburghGoogle Scholar
  18. DGE Baltic Soil and Environment (2010) Panevėžio miesto savivaldybės Molainių buvusių nuotėkų filtracijos laukų detalieji ekogeologiniai tyrimai, VilniusGoogle Scholar
  19. European Biochar Foundation (2016) European biochar certificate—guidelines for a sustainable production of biochar. Accessed 4 Feb 2016
  20. Fergusson JE (1990) The heavy elements: chemistry, environmental impact, and health effects. Pergamon Press, OxfordGoogle Scholar
  21. Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 9:12Google Scholar
  22. Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51(6):2061–2069CrossRefGoogle Scholar
  23. Geotestus (2013) Buvusių nuotekų filtracijos laukų užterštos teritorijos kontrolinis ekogeologinis tyrimas Panevėžio apsk., Panevėžio m. sav., Molainių g. VilniusGoogle Scholar
  24. Gul S, Naz A, Fareed I, Irshad M (2014) Reducing heavy metals extraction from contaminated soils using organic and inorganic amendments—review. Polish J Environ Stud 24(3):1423–1426Google Scholar
  25. Hass A, Gonzalez JM, Lima IM, Godwin HW, Halvorson JJ, Boyer DG (2012) Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J Environ Qual 41:1096–1106CrossRefGoogle Scholar
  26. Herath I, Iqbal MCM, Al-Wabel MI, Abduljabbar A, Ahmad M, Usman ARA, Ok YS, Vithanage M (2017) Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. J Soils Sediments 17:731–740CrossRefGoogle Scholar
  27. Houben D, Evrard L, Sonnet P (2013a) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57:196–204CrossRefGoogle Scholar
  28. Houben D, Evrard L, Sonnet P (2013b) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457CrossRefGoogle Scholar
  29. ISO 10381-2:2002. Ėminių ėmimas. 2 dalis. Ėmimo būdų vadovas, p 10Google Scholar
  30. ISO 14688-2:2004. Geotechniniai tyrinėjimai ir bandymai. Gruntų atpažintis ir klasifikavimas. 2 dalis. Klasifikavimo principaiGoogle Scholar
  31. Jackson TJ (1993) Measuring surface soil moisture using passive microwave remote sensing. Hydr Proc 7:139–152CrossRefGoogle Scholar
  32. Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621CrossRefGoogle Scholar
  33. Jones S, Bardos RP, Kidd PS, Mench M, de Leij F, Hutchings T, Cundy A, Joyce C, Soja G, Friesl-Hanl W, Herzig R, Menger P (2016) Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J Environ Manag 171:101–112CrossRefGoogle Scholar
  34. Karami N, Clemente R, Moreno-Jimenez E, Lepp N, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass (Lolium perenne). J Hazard Mater 191:41–48CrossRefGoogle Scholar
  35. Khan KT, Chowdhury MTA, Imamul Huq SM (2015) Effects of biochar on the fate of heavy metals Cd, Cu, Pb and Zn in soil. Bangladesh J Sci Res 28:17–26CrossRefGoogle Scholar
  36. Koltowski M, Oleszczuk P (2015) Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecol Eng 75:79–85CrossRefGoogle Scholar
  37. Komkiene J, Baltrenaite E (2016) Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. Int J Environ Sci Technol 13:471–482CrossRefGoogle Scholar
  38. Lambrechts T, Couder E, Bernal MP, Faz A, Iserentant A, Lutts S (2011) An assessment of heavy metals bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test. Water Air Soil Pollut 217:333–346CrossRefGoogle Scholar
  39. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836CrossRefGoogle Scholar
  40. Liaudanskienė I, Šlepetienė A, Velykis A (2008) Žemės dirbimo ir sėjomainos įtaka dirvožemio anglies pokyčiams ekstrahuotose frakcijose. Žemdirbystė 95:19–28Google Scholar
  41. LST CEN/TS 14405. Documentation. Bibliographical references. Content, form and structure [Dokumentai. Bibliografinės nuorodos. Turinys. Forma ir sandara], p 26Google Scholar
  42. Ma Y, Lombi E, Oliver IW, Nolan AL, McLaughlin MJ (2006) Long-term aging of copper added to soils. Environ Sci Technol 40:6310–6317CrossRefGoogle Scholar
  43. Mažvila J, Vaišvila Z, Staugaitis G (2011) Dirvožemio agrocheminių savybių įtaka žemės ūkio augalų derlingumui. Lietuvos žemės našumas, pp 124–128Google Scholar
  44. Meyer S, Glaser B, Quicker P (2011) Technical, economical and climate related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483CrossRefGoogle Scholar
  45. Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gomez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57CrossRefGoogle Scholar
  46. Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255CrossRefGoogle Scholar
  47. Nelissen V, Ruysschaert G, Müller-Stöver D, Bodé S, Cook J, Ronsse F, Shackley S, Boeckx P, Hauggaard-Nielsen H (2014) Short-term effect of feedstock and pyrolysis temperature on biochar characteristics, soil and crop response in temperate soils. Agronomy 4:52–73CrossRefGoogle Scholar
  48. Nguyen B, Lehmann J, Kinvangi J, Smernik R, Riha S, Engelhard M (2009) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89:163–176CrossRefGoogle Scholar
  49. Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Harry S (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206Google Scholar
  50. Novak JM, Cantrell KB, Watts DW, Busscher WJ, Johnson MG (2014) Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. J Soils Sediments 14(2):330–334CrossRefGoogle Scholar
  51. Park J, Choppala G, Bolan N, Chung J, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451CrossRefGoogle Scholar
  52. Pečkytė J, Baltrėnaitė E (2015) Assessment of heavy metals leaching from (bio)char obtained from industrial sewage sludge. Moksl Liet Ateitis 7(4):399–406CrossRefGoogle Scholar
  53. Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon J Sci 35:25–39Google Scholar
  54. Rajapaksha AU, Vithanage M, Oze C, Bandara WMAT, Weerasooriya R (2012) Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma 189(190):1–9CrossRefGoogle Scholar
  55. Rees F, Simonnot MO, Morel JL (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65(1):149–161CrossRefGoogle Scholar
  56. Schreck E, Foucault Y, Geret F, Pradere P, Dumat C (2011) Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles. Chemosphere 85:1555–1562CrossRefGoogle Scholar
  57. Šilinskaitė J (2014) Research and evaluation of biochar adsorption capacity from heavy metal ions from aqueous phase. Master thesis, Vilnius Gediminas Technical University, Vilnius, p 45Google Scholar
  58. Sommers LE (1980) Toxic metals in agricultural crops. In: Bitton G, Damron BL, Edds GT, Davidson JM (eds) Sludge health risks of land application. Ann Arbor Science Publishers, Ann Arbor, pp 105–140Google Scholar
  59. Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, DuSaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85(5):869–882CrossRefGoogle Scholar
  60. Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41(4):973–989CrossRefGoogle Scholar
  61. Sposito G (1989) The chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  62. Sujetovienė G (2011) Dirvožemio ekologija. Naujo studijų dalyko programos parengimas, KaunasGoogle Scholar
  63. Uchimiya M, Chang S, Klasson T (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190(2011):432–441CrossRefGoogle Scholar
  64. Uchimiya M, Cantrell KB, Hunt PG, Novak JM, Chang S (2012) Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars. J Environ Qual 41:1138–1149CrossRefGoogle Scholar
  65. Volungevičienė R, Bolutienė V, Buinevičius K (2014) Elektronikos plokščių pelenų tyrimai ir jų pavojingumo vertinimas. Moksl Liet Ateitis 6(4):400–406CrossRefGoogle Scholar
  66. Wagner A (2014) Biochar as soil amendment for the immobilization of copper, zinc, cadmium and lead on former sewage fields. Doctoral dissertation, pp 14–32Google Scholar
  67. Wagner A, Kaupenjohann M (2014) Suitability of biochars (pyro- and hydrochars) for metal immobilization on former sewage-field soils. Eur J Soil Sci 65(1):139–148CrossRefGoogle Scholar
  68. Wagner A, Kaupenjohann M, Hu Y, Kruse J, Leinweber P (2015) Biochar-induced formation of Zn–P-phases in former sewage field soils studied by PK-edge XANES spectroscopy. J Plant Nutr Soil Sci 178:582–585CrossRefGoogle Scholar
  69. Wong M, Swift RS (2003) Role of organic matter in alleviating soil acidity. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 337–358Google Scholar
  70. Yathavakulasingam T, Mikunthan T, Vithanage M (2016) Biochar produced at different temperatures as bioamendment to reduce bioavailability of heavy metals. Am Eurasian J Agric Environ Sci 16(3):512–517Google Scholar
  71. Yobouet YA, Adouby K, Trokourey A, Yao B (2010) Cadmium, copper, lead and zinc speciation in contaminated soils. Int J Eng Sci 2(5):802Google Scholar
  72. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Biores Technol 102:3488–3497CrossRefGoogle Scholar
  73. Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—a field experiment in Hunan, China. Environ Sci Pollut Res 22(14):11097–11108CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Department of Environmental ProtectionVilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations