Advertisement

Spatial contamination and health risks of heavy metal(loid)s in surface soils from a petrochemical complex in the north-eastern region of Algeria

  • H. Boudia
  • L. Vassalo
  • M. Hadjel
  • P. Prudent
  • J.-L. BoudenneEmail author
Original Paper
  • 17 Downloads

Abstract

The spatial distribution patterns, origins and environmental and health risks of metal trace elements (As, Cd, Co, Cr, Cu, Ni, Pb, Zn) have been evaluated through spiking and analysis of 84 soil samples in the region of Arzew (Algeria). This city has one of the biggest petroleum harbours of Algeria and in the same platform several industries, coexisting with residential and agricultural areas. The mean concentration of all the metals studied exceeds their corresponding background levels and/or exceeds the ecological predicted no effect concentration values. The geo-accumulation and the potential ecological risk indices indicate a low to moderate risk for As, Co, Cu, Ni and Zn and a moderate to considerable risk for Cr and Pb. According to the health risk assessment results, the carcinogenic risks due to Cr exceed the acceptable level in all the functional areas, and when considering combined effects of metals, the hazard index obtained shows a high potential carcinogenic risk to the local children.

Keywords

Heavy metal Spatial distribution Pollution assessment Health impact Urban soil 

Notes

Acknowledgements

The funding of this study primarily originated from the PROFAS B + Research Program of the French Ministry of Europe and Foreign Affairs.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13762_2018_2195_MOESM1_ESM.docx (636 kb)
Supplementary material 1 (DOCX 635 kb)

References

  1. Abraham J, Kim Dowling D, Florentine S (2018) Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia. Chemosphere 192:122–132.  https://doi.org/10.1016/j.chemosphere.2017.10.150 CrossRefGoogle Scholar
  2. Aden M, Na Ubol R, Knorr M, Husson J, Euvrard M (2017) Efficient removal of nickel(II) salts from aqueous solution using carboxymethylchitosan-coated silica particles as adsorbent. Carbohydr Polym 173:372–382.  https://doi.org/10.1016/j.carbpol.2017.05.090 CrossRefGoogle Scholar
  3. AFNOR (Agence Française de NORmalisation) (1996) Qualité des sols Recueil de normes Françaises 1996. AFNOR, ParisGoogle Scholar
  4. Arab M, Bracene R, Roure F, Zazoun RS, Mahdjoub Y, Badji R (2015) Source rocks and related petroleum systems of the Chelif Basin, (western Tellian domain, north Algeria). Mar Pet Geol 64:363–385.  https://doi.org/10.1016/j.marpetgeo.2015.03.017 CrossRefGoogle Scholar
  5. Barraza F, Maurice L, Uzu G, Becerra S, López F, Ochoa-Herrera V, Ruales J, Schreck E (2018) Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: an insight into impacts of oil activities. Sci Total Environ 622–623:106–120.  https://doi.org/10.1016/j.scitotenv.2017.11.24 CrossRefGoogle Scholar
  6. Bermudez GM, Jasan R, Pla R, Pignata ML (2011) Heavy metal and trace element concentrations in wheat grains: assessment of potential non-carcinogenic health hazard through their consumption. J Hazard Mater 193:264–271CrossRefGoogle Scholar
  7. Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJF, Graham MC, Ngwenya BT, Farmer JG (2010) Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Sci Total Environ 409:267–277.  https://doi.org/10.1016/j.scitotenv.2010.09.007 CrossRefGoogle Scholar
  8. Cao Z, Wang M, Chen Q, Zhang Y, Dong W, Yang T, Yan G, Zhang X, Pi Y, Xi B, Bu Q (2018) Preliminary assessment on exposure of four typical populations to potentially toxic metals by means of skin wipes under the influence of haze pollution. Sci Total Environ 613–614:886–893.  https://doi.org/10.1016/j.scitotenv.2017.09.181 CrossRefGoogle Scholar
  9. Chen L, Zhou S, Shi Y, Wang C, Li B, Li Y, Wu S (2018) Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci Total Environ 615:141–149.  https://doi.org/10.1016/j.scitotenv.2017.09.230 CrossRefGoogle Scholar
  10. CNEMC (China National Environmental Monitoring Center (1990) Background concentrations of elements in soils of China. Chinese Environment Science Press, Beijing (in Chinese) Google Scholar
  11. Dauvin JC, Bakalem A, Baffreau A, Grimes S (2017) Benthic ecological status of Algerian harbours. Mar Pollut Bull 125:378–388.  https://doi.org/10.1016/j.marpolbul.2017.09.049 CrossRefGoogle Scholar
  12. Doumergue F, Ficheur E (1908) Carte géologique de l’Algérie 1/50 000, feuille Oran (1ère éd.)Google Scholar
  13. Håkanson L (1980) An Ecological Risk Index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001CrossRefGoogle Scholar
  14. Kampeerawipakorn O, Navasumrit P, Settachana D, Promvijit J, Hunsonti P, Parnlob V, Nakngama N, Choonvisase S, Chotikapukana P, Chanchaeamsai S, Ruchirawat M (2017) Health risk evaluation in a population exposed to chemical releases from a petrochemical complex in Thailand. Environ Res 152:207–213.  https://doi.org/10.1016/j.envres.2016.10.004 CrossRefGoogle Scholar
  15. Karim Z, Qureshi BA, Mumtaz M (2015) Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol Ind 48:358–364.  https://doi.org/10.1016/j.ecolind.2014.08.032 CrossRefGoogle Scholar
  16. Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M (2018) An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line. Toxicol Lett 282:25–36.  https://doi.org/10.1016/j.toxlet.2017.10.002 CrossRefGoogle Scholar
  17. Kossowska B, Dudka I, Gancarz R, Antonowicz-Juchniewicz J (2013) Application of classic epidemiological studies and proteomics in research of occupational and environmental exposure to lead, cadmium and arsenic. Int J Hyg Environ Health 216:1–7.  https://doi.org/10.1016/j.ijheh.2012.03.002 CrossRefGoogle Scholar
  18. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maesa L (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56.  https://doi.org/10.1016/j.tox.2017.05.015 CrossRefGoogle Scholar
  19. Maas S, Scheifler R, Benslama M, Crini N, Lucot E, Brahmia Z, Benyacoub S, Giraudoux P (2010) Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environ Pollut 158:2294–2301CrossRefGoogle Scholar
  20. Men C, Liu R, Xu F, Wang Q, Guo L, Shen Z (2018) Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci Total Environ 612:138–147.  https://doi.org/10.1016/j.scitotenv.2017.08.123 CrossRefGoogle Scholar
  21. Morse N, Walter MT, Osmond D, Hunt W (2016) Roadside soils show low plant available zinc and copper concentrations. Environ Pollut 209:30–37.  https://doi.org/10.1016/j.envpol.2015.11.011 CrossRefGoogle Scholar
  22. Mousavia SM, Motesharezadeh B, Hosseini HM, Alikhania H, Zolfaghari AA (2018) Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicol Environ Saf 147:206–216.  https://doi.org/10.1016/j.ecoenv.2017.08.045 CrossRefGoogle Scholar
  23. Mulware SJ (2013) Trace elements and carcinogenicity: a subject in review. 3 Biotech 3:85–96.  https://doi.org/10.1007/s13205-012-0072-6 CrossRefGoogle Scholar
  24. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4:75–85CrossRefGoogle Scholar
  25. Reimann C, Fabian K, Birke M, Filzmoser P, Demetriades A, Négrel P, Oorts K, Matschullat J, de Caritat P, Albanese S, Anderson M, Baritz R, Batista MJ, Bel-Ian A, Cicchella D, De Vivo B, De Vos W, Dinelli E, Ďuriš M, Dusza-Dobek A, Eggen OA, Eklund M, Ernsten V, Flight DMA, Forrester S, Fügedi U, Gilucis A, Gosar M, Gregorauskiene V, De Groot W, Gulan A, Halamić J, Haslinger E, Hayoz P, Hoogewerff J, Hrvatovic H, Husnjak S, Jähne-Klingberg F, Janik L, Jordan G, Kaminari M, Kirby J, Klos V, Kwećko P, Kuti L, Ladenberger A, Lima A, Locutura J, Lucivjansky P, Mann A, Mackovych D, McLaughlin M, Malyuk BI, Maquil R, Meuli RG, Mol G, O'Connor P, Ottesen RT, Pasnieczna A, Petersell V, Pfleiderer S, Poňavič M, Prazeres C, Radusinović S, Rauch U, Salpeteur I, Scanlon R, Schedl A, Scheib A, Schoeters I, Šefčik P, Sellersjö E, Slaninka I, Soriano-Disla JM, Šorša A, Svrkota R, Stafilov T, Tarvainen T, Tendavilov V, Valera P, Verougstraete V, Vidojević D, Zissimos A, Zomeni Z, Sadeghi M (2018) GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl Geochem 88:302–318CrossRefGoogle Scholar
  26. Solgi E, Sheikhzadeha H, Solgi M (2018) Role of irrigation water, inorganic and organic fertilizers in soil and crop contamination by potentially hazardous elements in intensive farming systems: case study from Moghan agro-industry, Iran. J Geochem Explor 185:74–80.  https://doi.org/10.1016/j.gexplo.2017.11.008 CrossRefGoogle Scholar
  27. Tang Z, Chai M, Cheng J, Jin J, Yang Y, Nie Z, Huang Q, Li Y (2017) Contamination and health risks of heavy metals in street dust from a coalmining city in eastern China. Ecotoxicol Environ Saf 138:83–91CrossRefGoogle Scholar
  28. Tayeb A, Chellali MR, Hamou A, Debbah S (2015) Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria. Mar Pollut Bull 98(1-2):281–288CrossRefGoogle Scholar
  29. Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282CrossRefGoogle Scholar
  30. Turner A, Lewis M (2018) Lead and other heavy metals in soils impacted by exterior legacy paint in residential areas of south west England. Sci Total Environ 619–620:1206–1213.  https://doi.org/10.1016/j.scitotenv.2017.11.041 CrossRefGoogle Scholar
  31. U.S. Environmental Protection Agency (EPA) (1989) Risk assessment guidance for superfund volume 1: human health evaluation manual (part A) office of emergency and remedial response; Washington, DC; EPA/540/1-89/002Google Scholar
  32. U.S. Environmental Protection Agency (EPA) (2011) Exposure Factors handbook: 2011 edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA. http://www.epa.gov/ncea/efh
  33. U.S. Environmental Protection Agency (EPA) (2014) Child-specific exposure scenarios examples. National Center for Environmental Assessment, Washington, DC; EPA/600/R-14/217F. Available from the National Information Service, Springfield, VA. http://www.epa.gov/ncaa
  34. Zhou Y, Niu L, Liu K, Yin S, Liu W (2018) Arsenic in agricultural soils across China: distribution pattern, accumulation trend, influencing factors, and risk assessment. Sci Total Environ 616–617:156–163.  https://doi.org/10.1016/j.scitotenv.2017.10.232 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.LSTGPUSTO-MB, UniversitéOranAlgeria
  2. 2.Aix Marseille University, CNRS, LCEMarseilleFrance

Personalised recommendations