Enhancement of anoxic phosphorus uptake of denitrifying phosphorus removal process by biomass adaption

  • A. MandelEmail author
  • I. Zekker
  • M. Jaagura
  • T. Tenno
Original Paper


Economical and efficient phosphorus (PO4-P) removal technologies with low oxygen and organic carbon demand are needed to avoid eutrophication and reduce wastewater treatment costs. A sequencing batch reactor (SBR) treating synthetic wastewater with similar characteristics to real domestic wastewater using peptone and meat extract as carbon sources and nitrate as terminal electron acceptor was set up to enhance anoxic PO4-P uptake of denitrifying phosphorus removal process. In the anaerobic/anoxic/oxic SBR, activated sludge inoculum was gradually adapted to prolonged anoxic and shortened aerobic phase durations of 3.5 h and 1 h, respectively. During biomass adaption, anoxic PO4-P uptake fraction from total PO4-P (anoxic + aerobic) uptake was enhanced from 70.5 to 90.4%. SBR long-term operation results showed that dosed nitrate loading and aeration phase duration affected PO4-P and total nitrogen (TN) removal. The highest PO4-P removal of 22.4 mg PO4-P g−1 mixed liquor suspended solids (MLSS) and average TN removal efficiency of 74.2% were achieved with 1-h aeration duration. The best dosed nitrate loading ranges for effective PO4-P and TN removal were 11.3–13.7 and 11.1–19.4 mg N g−1 MLSS d−1, respectively. Chemical oxygen demand and dissolved organic carbon removal efficiencies remained unaffected by changes in operating conditions with average values up to 96.3% and 98.0%, respectively. Pyrosequencing results demonstrated that during biomass adaption microbial community changed and adapted sludge probably contained some novel denitrifying phosphorus accumulating organisms. Therefore, this research shows that biomass adaption enabled to achieve efficient denitrifying phosphorus removal without acetate/propionate addition in the conditions similar to real domestic wastewater.


Acclimatization Dosed nitrate Duration of aeration Microbial community Simultaneous phosphorus and nitrogen removal 



This research was financially supported by institutional research funding (IUT20-16) of the Estonian Ministry of Education and Research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, WashingtonGoogle Scholar
  2. Bao LL, Li D, Li XK, Huang RX, Zhang J, Lv Y, Xia GQ (2007) Phosphorus accumulation by bacteria isolated from a continuous-flow two-sludge system. J Environ Sci (China) 19(4):391–395CrossRefGoogle Scholar
  3. Carvalho G, Lemos PC, Oehmen A, Reis MAM (2007) Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Res 41(19):4383–4396CrossRefGoogle Scholar
  4. Crocetti GR, Banfield JF, Keller J, Bond PL, Blackall LL (2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148(11):3353–3364CrossRefGoogle Scholar
  5. Ge H, Batstone DJ, Keller J (2015) Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. Water Res 69(1):173–182CrossRefGoogle Scholar
  6. Guo Y, Zeng W, Li N, Peng Y (2018) Effect of electron acceptor on community structures of denitrifying polyphosphate accumulating organisms in anaerobic-anoxic-oxic (A2O) process using DNA based stable-isotope probing (DNA-SIP). Chem Eng J 334:2039–2049CrossRefGoogle Scholar
  7. He Q, Song Q, Zhang S, Zhang W, Wang H (2018) Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions. Chem Eng J 331:841–849CrossRefGoogle Scholar
  8. Jabari P, Munz G, Oleszkiewicz JA (2014) Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor. Chemosphere 109:20–27CrossRefGoogle Scholar
  9. Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68(7):3206–3214CrossRefGoogle Scholar
  10. Kuba T, van Loosdrecht MCM, Heijnen JJ (1996) Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res 30(7):1702–1710CrossRefGoogle Scholar
  11. Marques R, Ribera-Guardia A, Santos J, Carvalho G, Reis MAM, Pijuan M, Oehmen A (2018) Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes. Water Res 137:262–272CrossRefGoogle Scholar
  12. McDonald JE, Larsen N, Pennington A, Connolly J, Wallis C, Rooks DJ, Hall N, McCarthy AJ, Allison HE (2016) Characterising the canine oral microbiome by direct sequencing of reverse-transcribed rRNA molecules. PLoS ONE 11(6):e0157046CrossRefGoogle Scholar
  13. McIlroy SJ, Saunders AM, Albertsen M, Nierychlo M, McIlroy B, Hansen AA, Karst SM, Nielsen JL, Nielsen PH (2015) MiDAS: the field guide to the microbes of activated sludge. Database 2015:bav062CrossRefGoogle Scholar
  14. OECD (2001) Test no. 303: simulation test—aerobic sewage treatment—A: activated sludge units; B: biofilms. In: OECD guidelines for the testing of chemicals, section 3. OECD Publishing, Paris. Accessed 29 May 2018
  15. Oren A (2014) The family Rhodocyclaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 975–998CrossRefGoogle Scholar
  16. Podedworna J, Zubrowska-Sudoł M (2012) Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase. Environ Technol 33(2):237–245CrossRefGoogle Scholar
  17. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596CrossRefGoogle Scholar
  18. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60(4):1232–1240Google Scholar
  19. Sun L, Zhao X, Zhang H, Zhang Y (2015) Biological characteristics of a denitrifying phosphorus-accumulating bacterium. Ecol Eng 81:82–88CrossRefGoogle Scholar
  20. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072CrossRefGoogle Scholar
  21. Wang Y, Zhou S, Ye L, Wang H, Stephenson T, Jiang X (2014) Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors. Water Res 67:33–45CrossRefGoogle Scholar
  22. Wang X, Wang S, Zhao J, Dai X, Peng Y (2016) Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment. Bioresour Technol 220:17–25CrossRefGoogle Scholar
  23. Yin J, Zhang P, Li F, Li G, Hai B (2015) Simultaneous biological nitrogen and phosphorus removal with a sequencing batch reactor–biofilm system. Int Biodeterior Biodegrad 103:221–226CrossRefGoogle Scholar
  24. Zekker I, Rikmann E, Tenno T, Lemmiksoo V, Menert A, Loorits L, Vabamäe P, Tomingas M, Tenno T (2012) Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR). Biodegradation 23:547–560CrossRefGoogle Scholar
  25. Zeng W, Zhang J, Wang A, Peng Y (2016) Denitrifying phosphorus removal from municipal wastewater and dynamics of “Candidatus Accumulibacter” and denitrifying bacteria based on genes of ppk1, narG, nirS and nirK. Bioresour Technol 207:322–331CrossRefGoogle Scholar
  26. Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53(4):1155–1163CrossRefGoogle Scholar
  27. Zhang M, Yang Q, Zhang J, Wang C, Wang S, Peng Y (2016a) Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic biological contact oxidation system. J Biosci Bioeng 122(4):456–466CrossRefGoogle Scholar
  28. Zhang M, Peng Y, Wang C, Wang C, Zhao W, Zeng W (2016b) Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process. Biochem Eng J 106:26–36CrossRefGoogle Scholar
  29. Zhao W, Zhang Y, Lv D, Wang M, Peng Y, Li B (2016) Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater. Chem Eng J 302:296–304CrossRefGoogle Scholar
  30. Zhou S, Zhang X, Feng L (2010) Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria. Bioresour Technol 101(6):1603–1610CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of TartuTartuEstonia
  2. 2.Tallinn University of TechnologyTallinnEstonia

Personalised recommendations