Advertisement

Improved visible photocatalytic activity of TiO2 nanoparticles to use in submerged membrane photoreactor for organic pollutant degradation

  • V. VatanpourEmail author
  • A. Karami
  • M. Sheydaei
Original Paper

Abstract

In this study, photocatalytic activity of TiO2 nanoparticles under visible light was improved and the modified photocatalysts were used in a pilot-scale continuous submerged photocatalytic membrane reactor (SPMR) for decolorization of Reactive Orange 29 (RO29) under visible light irradiation. The Taguchi method was used to optimize the activation of TiO2 nanoparticles. Effect of the activation precursors (urea, thiourea, ammonium thiocyanate and sulfanilic acid), TiO2: precursors w/w ratio (1:1–1:6), activation time (1–7 h) and activation temperature (350–500 °C) on the visible photocatalytic efficiency of the nanoparticles was investigated to achieve maximum decolorization efficiency. X-ray diffraction, scanning electron microscopy, Fourier transform infrared and diffuse reflection spectroscopy analysis were used to characterize the photocatalysts. The results presented that the doping source and the doping source:TiO2 ratio had the most and the lowest effect on the TiO2 activation process, respectively. When urea was applied as an activation precursor with mass ratio of 6:1 to TiO2 at 450 °C for 5 h, the decolorization efficiency of 84.2% was obtained in a continuous SPMR system. The RO29 degradation intermediates were analyzed by gas chromatography coupled with mass spectroscopy technique.

Keywords

Environmental chemistry Membranes Nanotechnology Photochemistry Remediation Reactor configuration 

Notes

Acknowledgement

The authors thank the Kharazmi University, Iran, for financial and other supports.

References

  1. Agarwal S, Tyagi I, Gupta VK, Fakhri A, Shahidi S (2017) Sonocatalytic, sonophotocatalytic and photocatalytic degradation of morphine using molybdenum trioxide and molybdenum disulfide nanoparticles photocatalyst. J Mol Liq 225:95–100CrossRefGoogle Scholar
  2. Arefi-Oskoui S, Vatanpour V, Khataee A (2016) Development of a novel high-flux PVDF-based ultrafiltration membrane by embedding Mg–Al nanolayered double hydroxide. J Ind Eng Chem 41:23–32CrossRefGoogle Scholar
  3. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  4. Bao N, Niu JJ, Li Y, Wu GL, Yu XH (2013) Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity. Environ Technol 34:2939–2949CrossRefGoogle Scholar
  5. Beydoun D, Amal R, Low GK-C, McEnvoy S (2000) Novel photocatalyst: titanium coated magnetic-activity and photodissolution. J Phys Chem B 104:4387–4396CrossRefGoogle Scholar
  6. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJ (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92:178–190CrossRefGoogle Scholar
  7. Bowering N, Croston D, Harrison PG, Walker GS (2007) Silver modified Degussa P25 for the photocatalytic removal of nitric oxide. Int J Photoenergy 2007:1–8CrossRefGoogle Scholar
  8. Butterfield M, Christensen PA, Curtis TP, Gunlazaurd J (1997) Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res 31:675–677CrossRefGoogle Scholar
  9. Cheng X, Yu X, Xing Z (2013) Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants. Appl Surf Sci 268:204–208CrossRefGoogle Scholar
  10. Dastkhoon M, Ghaedi M, Asfaram A, Goudarzi A, Langroodi SM, Tyagi I, Agarwal S, Gupta VK (2015) Ultrasound assisted adsorption of malachite green dye onto ZnS: Cu–NP–AC: Equilibrium isotherms and kinetic studies—response surface optimization. Sep Purif Technol 156:780–788CrossRefGoogle Scholar
  11. Dedual G, MacDonald MJ, Alshareef A, Wu Z, Tsang DC, Yip AC (2014) Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. J Environ Chem Eng 2:1947–1955CrossRefGoogle Scholar
  12. Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56CrossRefGoogle Scholar
  13. Essandoh M, Wolgemuth D, Charles UPJ, Mohan D, Mlsna T (2017) Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 174:49–57CrossRefGoogle Scholar
  14. Fakhri A, Rashidi S, Tyagi I, Agarwal S, Gupta VK (2016) Photodegradation of Erythromycin antibiotic by γ–Fe2O3/SiO2 nanocomposite: response surface methodology modeling and optimization. J Mol Liq 214:378–383CrossRefGoogle Scholar
  15. Fernande-Ibanez P, Blanco J, Malato S, Nieves FJ (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res 37:3180–3188CrossRefGoogle Scholar
  16. García-Araya JF, Beltran FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804CrossRefGoogle Scholar
  17. Hoseinian-Maleki F, Nemati A, Joya YF (2015) Synthesis of C–N–Y tri-doped TiO2 photo-catalyst for MO degradation and characterization. Mater Res Express 2:1–12CrossRefGoogle Scholar
  18. Khataee AR, Vatanpour V, Amani Ghadim AR (2009) Decolorization of C.I. Acid blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study. J Hazard Mater 161:1225–1233CrossRefGoogle Scholar
  19. Kılıç Ç, Zunger A (2002) N-type doping of oxides by hydrogen. Appl Phys Lett 81:73–75CrossRefGoogle Scholar
  20. Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Recent developments in titanium oxide-based photocatalysts. Appl Catal A Gen 325:1–14CrossRefGoogle Scholar
  21. Kobayakawa K, Murakami Y, Sato Y (2005) Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. J Photochem Photobiol, A 170:177–179CrossRefGoogle Scholar
  22. Madaeni SS, Vatanpour V, Monfared HA, Shamsabadi AA, Majdian K, Laki S (2011) Removal of coke particles from oil contaminated marun petrochemical wastewater using PVDF microfiltration membrane. Ind Eng Chem Res 50:11712–11719CrossRefGoogle Scholar
  23. Ménesi J, Körösi L, Bazsó É, Zöllmer V, Richardt A, Dékány I (2008) Photocatalytic oxidation of organic pollutants on titania–clay composites. Chemosphere 70:538–542CrossRefGoogle Scholar
  24. Mozia S (2010) Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol 73:71–91CrossRefGoogle Scholar
  25. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265:115–121CrossRefGoogle Scholar
  26. Oskoei V, Dehghani MH, Nazmara S, Heibati B, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. J Mol Liq 213:374–380CrossRefGoogle Scholar
  27. Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma Process 22:335–350CrossRefGoogle Scholar
  28. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  29. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349CrossRefGoogle Scholar
  30. Porter JF, Li YG, Chan CK (1999) The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. J Mater Sci 34:1523–1531CrossRefGoogle Scholar
  31. Pourjafar S, Jahanshahi M, Rahimpour A (2013) Optimization of TiO2 modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method. Desalination 315:107–114CrossRefGoogle Scholar
  32. Rajabi HR, Khani O, Shamsipur M, Vatanpour V (2013) High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J Hazard Mater 250–251:370–378CrossRefGoogle Scholar
  33. Royaee SJ, Sohrabi M, Soleymani F (2011) Performance of a photo-impinging streams reactor for the phenol degradation process. J Chem Technol Biotechnol 86:205–212CrossRefGoogle Scholar
  34. Sheydaei M, Aber S, Khataee A (2014a) Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. J Ind Eng Chem 20:1772–1778CrossRefGoogle Scholar
  35. Sheydaei M, Aber S, Khataee A (2014b) Preparation of a novel γ-FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor. J Mol Catal A: Chem 392:229–234CrossRefGoogle Scholar
  36. Singh SA, Madras G (2013) Photocatalytic degradation with combustion synthesized WO3 and WO3TiO2 mixed oxides under UV and visible light. Sep Purif Technol 105:79–89CrossRefGoogle Scholar
  37. Tsumura T, Kojitani N, Umemura H, Toyoda M, Inagaki M (2002) Composites between photoactive anatase-type TiO2 and adsorptive carbon. Appl Surf Sci 196:429–436CrossRefGoogle Scholar
  38. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J Phys Chem Solids 63:1909–1920CrossRefGoogle Scholar
  39. Vatanpour V, Karami A, Sheydaei M (2017) Central composite design optimization of Rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor. Chem Eng Process Process Intensif 116:68–75CrossRefGoogle Scholar
  40. Weimin XI, Geissen SU (2001) Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Res 35:1256–1262CrossRefGoogle Scholar
  41. Xing M, Zhang J, Chen F (2009) New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl Catal B Environ 89:563–569CrossRefGoogle Scholar
  42. Yakavalangi ME, Rimaz S, Vatanpour V (2017) Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes. J Appl Polym Sci 134:44444Google Scholar
  43. Zamani N, Rajabi HR, Taghdiri M, Fakhaei AS, Vatanpour V (2014) Comparative study of different systems for adsorption and catalytic oxidation of hexamine in industrial wastewaters. J Ind Eng Chem 20:37–45CrossRefGoogle Scholar
  44. Zhou L, Deng J, Zhao Y, Liu W, An L, Chen F (2009) Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation. Mater Chem Phys 117:522–527CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryKharazmi UniversityTehranIran

Personalised recommendations