Trimethylphenylammonium-modified montmorillonite: efficient hybrid adsorbent for removal of U(VI) from carbonate- and sulfate-containing solutions

  • H. Seddighi
  • A. K. DarbanEmail author
  • A. Khanchi
  • J. Fasihi
  • J. Koleini
Original Paper


Montmorillonite (MMT) clay was modified using the hydrothermal method through the intercalation and adsorption of the trimethylphenylammonium bromide (TMPA) and applied for the removal of U(VI) from the carbonate- and sulfate-containing solutions using batch experiments. The hydrothermal technique provides a simple, fast, and efficient route for the successful preparation of TMPA-MMT. The prepared adsorbent was characterized by FTIR, XRD, SEM, and TGA techniques. The increasing interlayer space of MMT from 1.20 to 2.02 nm occurs as a result of TMPA intercalation. The modification of MMT by a TMPA surfactant enhanced adsorption capacity of U(VI) species from sulfate- and carbonate-containing solutions over a wide range of pH. The highest capacity for adsorption of U(VI)-carbonate and U(VI)-sulfate complexes was around 38 and 26 mg/g, respectively. The outer-sphere surface complexation is probably dominant mechanism in adsorption of anionic uranyl carbonate and sulfate species. These findings proposed that TMPA-MMT can be applied as an efficient and potential adsorbent for the removal of uranyl anionic species from carbonate- and sulfate-containing aqueous solutions.


Clay-based adsorbent Uranyl carbonate Uranyl sulfate Intercalation 



The authors would like to acknowledge the technical assistance of faculty staff in Tarbiat Modares University and Nuclear Science and Technology Research Institute (NSTRI), Iran.


  1. Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2(6):335–341CrossRefGoogle Scholar
  2. Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater 169(1):324–332CrossRefGoogle Scholar
  3. Anirudhan T, Bringle C, Rijith S (2010) Removal of uranium (VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101(3):267–276CrossRefGoogle Scholar
  4. Behnsen J, Riebe B (2008) Anion selectivity of organobentonites. Appl Geochem 23(9):2746–2752CrossRefGoogle Scholar
  5. Bors J, Dultz S, Riebe B (2000) Organophilic bentonites as adsorbents for radionuclides: I. Adsorption of ionic fission products. Appl Clay Sci 16(1):1–13CrossRefGoogle Scholar
  6. Bouras O, Houari M, Khalaf H (2001) Using of surfactant modified Fe-pillared bentonite for the removal of pentachlorophenol from aqueous stream. Environ Technol 22(1):69–74CrossRefGoogle Scholar
  7. Boyd SA, Mortland MM, Chiou CT (1988) Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci Soc Am J 52(3):652–657CrossRefGoogle Scholar
  8. Brown G (1982) Crystal structures of clay minerals and their X-ray identification. The Mineralogical Society of Great Britain and Ireland, UKGoogle Scholar
  9. Brum MC, Capitaneo JL, Oliveira JF (2010) Removal of hexavalent chromium from water by adsorption onto surfactant modified montmorillonite. Miner Eng 23(3):270–272CrossRefGoogle Scholar
  10. Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175(1):393–398CrossRefGoogle Scholar
  11. Chellam S, Clifford DA (2002) Physical–chemical treatment of groundwater contaminated by leachate from surface disposal of uranium tailings. J Environ Eng 128(10):942–952CrossRefGoogle Scholar
  12. Churchman G, Gates W, Theng B, Yuan G (2006).1 clays and clay minerals for pollution control. Dev Clay Sci 1:625–675CrossRefGoogle Scholar
  13. de Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1):8–24CrossRefGoogle Scholar
  14. Dong Y, Wu D, Chen X, Lin Y (2010) Adsorption of bisphenol a from water by surfactant-modified zeolite. J Colloid Interface Sci 348(2):585–590CrossRefGoogle Scholar
  15. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2):475–510CrossRefGoogle Scholar
  16. Gonen Y, Rytwo G (2006) Using the dual-mode model to describe adsorption of organic pollutants onto an organoclay. J Colloid Interface Sci 299(1):95–101CrossRefGoogle Scholar
  17. Greathouse JA, Cygan RT (2005) Molecular dynamics simulation of uranyl (VI) adsorption equilibria onto an external montmorillonite surface. Phys Chem Chem Phys 7(20):3580–3586CrossRefGoogle Scholar
  18. Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L (2014) A novel magnetic Fe@ Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217CrossRefGoogle Scholar
  19. Gupta VK, Agarwal S, Olgun A, Demir Hİ, Yola ML, Atar N (2016) Adsorptive properties of molasses modified boron enrichment waste based nanoclay for removal of basic dyes. J Ind Eng Chem 34:244–249CrossRefGoogle Scholar
  20. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93(3):127–143CrossRefGoogle Scholar
  21. Hiyoshi K, Morimitsu W (1991) Adsorption of uranium on organo-clay complex. Radioisotopes (Tokyo) 40(10):399–405CrossRefGoogle Scholar
  22. Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742CrossRefGoogle Scholar
  23. Karaca S, Gürses A, Ejder Korucu M (2012) Investigation of the orientation of CTA+ ions in the interlayer of CTAB pillared montmorillonite. J Chem 2013:10Google Scholar
  24. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169CrossRefGoogle Scholar
  25. Kooli F, Liu Y, Alshahateet SF, Messali M, Bergaya F (2009) Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl Clay Sci 43(3):357–363CrossRefGoogle Scholar
  26. Kubilay Ş, Gürkan R, Savran A, Şahan T (2007) Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1):41–51CrossRefGoogle Scholar
  27. Kulyukhin S, Krasavina E, Gredina I, Mizina L (2010) Sorption of U (VI) from aqueous solutions on layered double hydroxides of Mg, Al, and Nd. Radiochemistry 52(6):653–661CrossRefGoogle Scholar
  28. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Vet Akad Handl 24(4):1–39Google Scholar
  29. Lee J, Lee H (2004) Characterization of organobentonite used for polymer nanocomposites. Mater Chem Phys 85(2):410–415CrossRefGoogle Scholar
  30. Lee SM, Tiwari D (2012) Organo and inorgano–organo-modified clays in the remediation of aqueous solutions: an overview. Appl Clay Sci 59:84–102CrossRefGoogle Scholar
  31. Lee Y-C, Park W-K, Yang J-W (2011) Removal of anionic metals by amino-organoclay for water treatment. J Hazard Mater 190(1):652–658CrossRefGoogle Scholar
  32. Li J, Zhang Y (2012) Remediation technology for the uranium contaminated environment: a review. Procedia Environ Sci 13:1609–1615CrossRefGoogle Scholar
  33. Lovley DR, Phillips EJ (1991) Microbial reduction of uranium. Nature 350(6317):413CrossRefGoogle Scholar
  34. Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010a) Characterization of uranium (VI) sorption by organobentonite. Appl Surf Sci 256(17):5416–5421CrossRefGoogle Scholar
  35. Majdan M, Pikus S, Gajowiak A, Sternik D, Zięba E (2010b) Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. J Hazard Mater 184(1):662–670CrossRefGoogle Scholar
  36. McKinley JP, Zachara JM, Smith SC, Turner GD (1995) The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U (VI) to montmorillonite. Clay Clay Miner 43(5):586–598CrossRefGoogle Scholar
  37. Niu Z, Fan Q, Wang W, Xu J, Chen L, Wu W (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium (VI) to attapulgite. Appl Radiat Isot 67(9):1582–1590CrossRefGoogle Scholar
  38. Nourmoradi H, Nikaeen M, Pourzamani H, Nejad MH (2013) Comparison of the efficiencies of modified clay with polyethylene glycol and tetradecyl trimethyl ammonium bromide for BTEX removal. Int J Environ Health Eng 2(1):7CrossRefGoogle Scholar
  39. Park Y, Ayoko GA, Frost RL (2011) Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J Colloid Interface Sci 354(1):292–305CrossRefGoogle Scholar
  40. Parolo ME, Pettinari GR, Musso TB, Sánchez-Izquierdo MP, Fernández LG (2014) Characterization of organo-modified bentonite sorbents: the effect of modification conditions on adsorption performance. Appl Surf Sci 320:356–363CrossRefGoogle Scholar
  41. Prikryl JD, Jain A, Turner DR, Pabalan RT (2001) Uranium VI sorption behavior on silicate mineral mixtures. J Contam Hydrol 47(2):241–253CrossRefGoogle Scholar
  42. Rachkova N, Shuktomova I (2010) Sorption of U (VI) and Ra from aqueous solutions with analcime-containing rock. Radiochemistry 52(1):76–80CrossRefGoogle Scholar
  43. Riebe B, Dultz S, Bunnenberg C (2005) Temperature effects on iodine adsorption on organo-clay minerals: I. Influence of pretreatment and adsorption temperature. Appl Clay Sci 28(1):9–16CrossRefGoogle Scholar
  44. Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Rajarathnam D, Naidu R (2010) Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J Hazard Mater 183(1):87–97CrossRefGoogle Scholar
  45. Sarkar B, Megharaj M, Xi Y, Naidu R (2011) Structural characterisation of Arquad® 2HT-75 organobentonites: surface charge characteristics and environmental application. J Hazard Mater 195:155–161CrossRefGoogle Scholar
  46. Şimşek S, Baybaş D, Koçyiğit MÇ, Yıldırım H (2014) Organoclay modified with lignin as a new adsorbent for removal of Pb2+ and Uo22+. J Radioanal Nucl Chem 299(1):283–292CrossRefGoogle Scholar
  47. Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. Environ Geochem Miner Depos Part B Case Stud Res Top 6:161–182Google Scholar
  48. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Adsorption performance of talc for uranium removal from aqueous solution. Chem Eng J 171(3):1185–1193CrossRefGoogle Scholar
  49. Takeda S, Shima S, Kimura H, Matsuzuru H (1995) The aqueous solubility and speciation analysis for uranium, neptunium and selenium by the geochemical code (EQ3/6). Res Jpn At Energy Res Inst (Tokyo) 95:069Google Scholar
  50. Turner G, Zachara J, McKinley J, Smith S (1996) Surface-charge properties and Uo22+ adsorption of a subsurface smectite. Geochim Cosmochim Acta 60(18):3399–3414CrossRefGoogle Scholar
  51. Wang L, Wang A (2008) Adsorption properties of congo red from aqueous solution onto surfactant-modified montmorillonite. J Hazard Mater 160(1):173–180CrossRefGoogle Scholar
  52. Warchoł J, Misaelides P, Petrus R, Zamboulis D (2006) Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J Hazard Mater 137(3):1410–1416CrossRefGoogle Scholar
  53. Xi Y, Mallavarapu M, Naidu R (2010) Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl Clay Sci 48(1):92–96CrossRefGoogle Scholar
  54. Yola ML, Eren T, Atar N (2014a) A novel efficient photocatalyst based on Tio 2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem Eng J 250:288–294CrossRefGoogle Scholar
  55. Yola ML, Eren T, Atar N, Wang S (2014b) Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem Eng J 242:333–340CrossRefGoogle Scholar
  56. Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol 49(3):534–540CrossRefGoogle Scholar
  57. Yusan SD, Akyil S (2008) Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater 160(2):388–395CrossRefGoogle Scholar
  58. Zawrah M, Khattab R, Saad E, Gado R (2014) Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochim Acta Part A Mol Biomol Spectrosc 122:616–623CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • H. Seddighi
    • 1
  • A. K. Darban
    • 1
    Email author
  • A. Khanchi
    • 2
  • J. Fasihi
    • 2
  • J. Koleini
    • 1
  1. 1.Faculty of EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Materials and Nuclear Fuel Research SchoolNuclear Science and Technology Research InstituteTehranIran

Personalised recommendations