Advertisement

Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater

  • X. J. Gao
  • X. J. Fan
  • X. P. Chen
  • Z. Q. Ge
Original Paper

Abstract

The emergence of antibiotics residues in pharmaceutical industrial wastewater has been a significant environment problem. However, current methods of treating antibiotic-polluted wastewater are inefficient, of high cost and time-consuming. In this study, highly effective enzymatic Fe3O4 magnetic nanoparticles were developed, which is extremely simple and can degrade antibiotics in a fast manner at a low cost. β-Lactamase, a representative enzyme for β-lactam antibiotic degradation, was covalently immobilized on the surface of magnetic nanoparticles modified with amino groups by a simple cross-linking process. The immobilized β-lactamase displayed a wider pH and temperature range for penicillin G degradation than the free enzyme. Meanwhile, the thermostability and storage stability of the immobilized β-lactamase were improved. Fifty milligrams magnetic nanoparticles immobilized with β-lactamase can thoroughly degrade 100 mL penicillin G (5–50 mg L−1) within 5 min. Even if the β-lactamase immobilized on the nanoparticles was reused 35 times in the 5 mg L−1 penicillin G solution, it still kept more than 95% degradation efficiency. These suggest that magnetic nanoparticles immobilized with β-lactamase have a sufficient capacity for degrading antibiotics in wastewater and will serve as a practical and economical solution to antibiotic pollution in pharmaceutical industrial wastewater treatment.

Keywords

Antibiotic pollution β-Lactamase Magnetic nanoparticles Reusability 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31371014).

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.

References

  1. Amirbandeh M, Taheri-Kafrani A (2016) Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: improved stability and reusability. Int J Biol Macromol 93:1183–1191. doi: 10.1016/j.ijbiomac.2016.09.092 CrossRefGoogle Scholar
  2. Arslan-Alaton I, Dogruel S (2004) Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J Hazard Mater 112:105–113. doi: 10.1016/j.jhazmat.2004.04.009 CrossRefGoogle Scholar
  3. Ashfaq M et al (2017) Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol Environ Saf 136:31–39. doi: 10.1016/j.ecoenv.2016.10.029 CrossRefGoogle Scholar
  4. Bai ZY, Yang Q, Wang JL (2016) Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid. Int J Environ Sci Technol (Tehran) 13:483–492. doi: 10.1007/s13762-015-0881-3 CrossRefGoogle Scholar
  5. Cao C, Wei LL, Su M, Wang G, Shen JQ (2016) “Spontaneous bubble-template” assisted metal–polymeric framework derived N/Co dual-doped hierarchically porous carbon/Fe3O4 nanohybrids: superior electrocatalyst for ORR in biofuel cells. J Mater Chem A 4:9303–9310. doi: 10.1039/c6ta03125k CrossRefGoogle Scholar
  6. Cardoso O, Porcher JM, Sanchez W (2014) Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere 115:20–30. doi: 10.1016/j.chemosphere.2014.02.004 CrossRefGoogle Scholar
  7. Chen TT, Yang WJ, Guo YL, Yuan RJ, Xu L, Yan YJ (2014) Enhancing catalytic performance of beta-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme Microb Technol 63:50–57. doi: 10.1016/j.enzmictec.2014.05.008 CrossRefGoogle Scholar
  8. Chiang CH, Ishida H, Koenig JL (1980) The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci 74:396–404. doi: 10.1016/0021-9797(80)90209-X CrossRefGoogle Scholar
  9. Conte D et al (2017) Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf 136:62–69. doi: 10.1016/j.ecoenv.2016.10.031 CrossRefGoogle Scholar
  10. d’Orlye F, Varenne A, Georgelin T, Siaugue JM, Teste B, Descroix S, Gareil P (2009) Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis. Electrophoresis 30:2572–2582. doi: 10.1002/elps.200800835 CrossRefGoogle Scholar
  11. Guo H, Tang Y, Yu Y, Xue L, Qian JQ (2016) Covalent immobilization of alpha-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. Int J Biol Macromol 87:537–544. doi: 10.1016/j.ijbiomac.2016.02.080 CrossRefGoogle Scholar
  12. Hu B, Pan J, Yu HL, Liu JW, Xu JH (2009) Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem 44:1019–1024. doi: 10.1016/j.procbio.2009.05.001 CrossRefGoogle Scholar
  13. Kim KD, Kim SS, Choa YH, Kim HT (2007) Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol–gel method. J Ind Eng Chem 13:1137–1141Google Scholar
  14. Lateef A (2004) The microbiology of a pharmaceutical effluent and its public health implications. World J Microbiol Biotechnol 20:167–171. doi: 10.1023/B:WIBI.0000021752.29468.4e CrossRefGoogle Scholar
  15. Li D, Yang M, Hu JY, Zhang Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42:307–317. doi: 10.1016/j.watres.2007.07.016 CrossRefGoogle Scholar
  16. Li YS, Church JS, Woodhead AL, Moussa F (2010) Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim Acta Part A 76:484–489. doi: 10.1016/j.saa.2010.04.004 CrossRefGoogle Scholar
  17. Li XS, Zhu GT, Luo YB, Yuan BF, Feng YQ (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal Chem 45:233–247. doi: 10.1016/j.trac.2012.10.015 CrossRefGoogle Scholar
  18. Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A 212:219–226. doi: 10.1016/s0927-7757(02)00305-9 CrossRefGoogle Scholar
  19. Ma ZY, Guan YP, Liu HZ (2005) Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J Polym Sci A Polym Chem 43:3433–3439. doi: 10.1002/pola.20803 CrossRefGoogle Scholar
  20. Michael I et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957–995. doi: 10.1016/j.watres.2012.11.027 CrossRefGoogle Scholar
  21. Namvari M, Namazi H (2014) Clicking graphene oxide and Fe3O4 nanoparticles together: an efficient adsorbent to remove dyes from aqueous solutions. Int J Environ Sci Technol (Tehran) 11:1527–1536. doi: 10.1007/s13762-014-0595-y CrossRefGoogle Scholar
  22. Ojer-Usoz E, Gonzalez D, Garcia-Jalon I, Vitas AI (2014) High dissemination of extended-spectrum beta-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants. Water Res 56:37–47. doi: 10.1016/j.watres.2014.02.041 CrossRefGoogle Scholar
  23. Park H, Choung YK (2007) Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathion S-transferase. Hum Ecol Risk Assess 13:1147–1155. doi: 10.1080/10807030701506223 CrossRefGoogle Scholar
  24. Pouretedal HR, Sadegh N (2014) Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J Water Process Eng 1:64–73. doi: 10.1016/j.jwpe.2014.03.006 CrossRefGoogle Scholar
  25. Qin X, Xiang XM, Sun XW, Ni H, Li L (2016) Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery. Int J Biol Macromol 82:13–21. doi: 10.1016/j.ijbiomac.2015.10.030 CrossRefGoogle Scholar
  26. Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307. doi: 10.1039/c2cs35231a CrossRefGoogle Scholar
  27. Shahriari T, Bidhendi GN, Mehrdadi N, Torabian A (2014) Effective parameters for the adsorption of chromium(III) onto iron oxide magnetic nanoparticle. Int J Environ Sci Technol (Tehran) 11:349–356. doi: 10.1007/s13762-013-0315-z CrossRefGoogle Scholar
  28. Shahtalebi A, Sarrafzadeh MH, Rahmati MMM (2011) Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical waste water. Iran J Environ Health Sci Eng 8:109–116. doi: 10.1016/j.seppur.2014.04.009 CrossRefGoogle Scholar
  29. Sikora A et al (2015) A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium. Anal Methods 7:9835–9843. doi: 10.1039/c5ay02014j CrossRefGoogle Scholar
  30. Su CM (2017) Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J Hazard Mater 322:48–84. doi: 10.1016/j.jhazmat.2016.06.060 CrossRefGoogle Scholar
  31. Tahrani L et al (2015) Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Microb Pathog 89:54–61. doi: 10.1016/j.micpath.2015.09.001 CrossRefGoogle Scholar
  32. Waley SG (1974) A spectrophotometric assay of beta-lactamase action on penicillins. Biochem J 139:789–790. doi: 10.1042/bj1390789 CrossRefGoogle Scholar
  33. Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299. doi: 10.1016/j.jcis.2010.05.010 CrossRefGoogle Scholar
  34. Wang G, Chu J, Noorman H, Xia JY, Tang WJ, Zhuang YP, Zhang SL (2014) Prelude to rational scale-up of penicillin production: a scale-down study. Appl Microbiol Biotechnol 98:2359–2369. doi: 10.1007/s00253-013-5497-2 CrossRefGoogle Scholar
  35. Wang J, He BS, Hu XM (2015) Human-use antibacterial residues in the natural environment of China: implication for ecopharmacovigilance. Environ Monit Assess 187:14. doi: 10.1007/s10661-015-4514-6 CrossRefGoogle Scholar
  36. Wang GS, Ma YY, Tong Y, Dong XF (2016) Synthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe3O4 nanoparticles. Smart Mater Struct 25:7. doi: 10.1088/0964-1726/25/3/035028 CrossRefGoogle Scholar
  37. Xi ZJ, Zheng B, Wang C (2016) Synthesis, surface modification, and biolabeling with aptamer of Fe3O4@SiO2 magnetic nanoparticles. Nanosci Nanotechnol Lett 8:1061–1066. doi: 10.1166/nnl.2016.2246 CrossRefGoogle Scholar
  38. Yao LL et al (2017) Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: a case study at Jianghan Plain, central China. Ecotoxicol Environ Saf 135:236–242. doi: 10.1016/j.ecoenv.2016.10.006 CrossRefGoogle Scholar
  39. Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P (2008) Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Microporous Mesoporous Mater 116:358–364. doi: 10.1016/j.micromeso.2008.04.023 CrossRefGoogle Scholar
  40. Zou XX, Fang Z, Min R, Bai X, Zhang Y, Xu D, Fang PQ (2014) Is nationwide special campaign on antibiotic stewardship program effective on ameliorating irrational antibiotic use in China? Study on the antibiotic use of specialized hospitals in China in 2011–2012. J Huazhong Univ Sci Technol Med Sci 34:456–463. doi: 10.1007/s11596-014-1300-6 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • X. J. Gao
    • 1
  • X. J. Fan
    • 1
  • X. P. Chen
    • 2
  • Z. Q. Ge
    • 1
  1. 1.Department of Pharmaceutical Engineering, School of Chemical Engineering and TechnologyTianjin University, Education Ministry Key Laboratory of Systems BioengineeringTianjinPeople’s Republic of China
  2. 2.Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinPeople’s Republic of China

Personalised recommendations