Sorption studies of yttrium(III) ions on surfaces of nano-thorium(IV) oxide and nano-zirconium( IV) oxide

  • S. S. DubeyEmail author
  • S. Grandhi
Original Paper


Sorption of yttrium on nano-thorium oxide and zirconium oxide was carried out as a function of pH, contact time, concentration, temperature and co-ions. The effect of initial yttrium ion concentration has been investigated in the range of 0.5–50 ppm for 1.0 mg of sorbent dosages. Maximum sorption of 10.5 mg/g in case of nano-thorium oxide and 18.0 mg/g in case of nano-zirconium oxide was noticed from the solution of initial metal ion concentration 0.5 ppm, temperature of 298 K, pH 6.9, shaking time of 120 min (nano-thorium oxide) and contact time of 50 min (nano-zirconium oxide) for the yttrium ion sorption. Sorption followed both Dubinin–Radushkevich and Langmuir isotherms. The free energy of sorption was found to be 8.77 kJ/mol (yttrium(III) vs nano-thorium dioxide) and 18.4 kJ/mol (yttrium(III) vs nano-zirconium oxide) using Dubinin–Radushkevich isotherm. Sorption increased with increase in temperature in the studied temperature range. Sorption was endothermic. And the values of ∆H°, ∆S° and ∆G° were also evaluated. Pseudo-second-order equation fitted for the sorption kinetics. Reichenberg equation was used to explain the diffusion process. The effects of co-ions on sorptions were also investigated. BET surface areas of sorbent particles were 33 m2/g for nano-zirconium oxide and 25 m2/g for nano-thorium oxide. X-ray diffraction and high-resolution transmission electron microscopy data revealed that the size of the sorbent particles was 4.7 and 15.5 nm for nano-thorium dioxide and nano-zirconium dioxide, respectively.


Yttrium Isotherm Kinetic model Thermodynamic parameters 



The authors would like to thank the Head of Department of Chemistry, GITAM University, Andhra Pradesh, India, for providing necessary laboratory facilities and UGC MRP Grant (MRP-MAJOR-CHEM-2013-15298) (F. No.: 43-185/2014-(SR)) dated: 13.02.2016 for funding to carry out the present work. The authors are grateful to Banaras Hindu University for XRD characterization, STIC, Cochin University for HR-TEM, SAIF, IIT Bombay for ICP-AES and IIT Kanpur for BET surface area analyser.


  1. Anastopoulos I, Bhatnagar A, Lima EC (2016) Adsorption of rare earth metals: a review of recent literature. J Mol Liq 221:954–962. doi: 10.1016/j.molliq.2016.06.076 CrossRefGoogle Scholar
  2. Binnemans K, Jones PT, Blanpain B, Gerven TV, Pontikeset Y (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 99:17–38. doi: 10.1016/j.jclepro.2015.02.089 CrossRefGoogle Scholar
  3. Cawthray JF, Creagh AL, Haynes CA, Orvig C (2015) Ion exchange in hydroxyapatite with lanthanides. Inorg Chem 54:1440–1445. doi: 10.1021/ic502425e CrossRefGoogle Scholar
  4. Chao HE, Suzuki N (1981) Adsorption behaviour of scandium, yttrium, cerium and uranium from xylenol orange solutions onto anion exchange resins. Anal Chim Acta 125:139–147CrossRefGoogle Scholar
  5. Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earth 31:933–943. doi: 10.1016/S1002-0721(13)60009-5 CrossRefGoogle Scholar
  6. Deuber R, Heim T (1991) Yttrium. In: Marian E (ed) Metals and their compounds in the environment: occurrence, analysis and biological relevance. VCH, Weinheim, pp 1299–1308Google Scholar
  7. Dubey SS, Grandhi S (2016) Sorption studies of yttrium(III) ions on nano maghemite. J Environ Chem Eng 4:4719–4730. doi: 10.1016/j.jece.2016.11.006 CrossRefGoogle Scholar
  8. Dutta Tanushree, Kim Ki-Hyun, Uchimiya Minori et al (2016) Global demand for rare earth resources and strategies for green mining. Environ Res 150:182–190. doi: 10.1002/2016EF000424 CrossRefGoogle Scholar
  9. Falconnet P (1993) The rare earth industry: a world of rapid change. J Alloys Compd 192:114–117. doi: 10.1016/0925-8388(93)90203-Y CrossRefGoogle Scholar
  10. Guo L, Arafune H, Teramae N (2013) Synthesis of mesoporous metal oxide by the thermal decomposition of oxalate precursor. Langmuir 29:4404–4412. doi: 10.1021/la400323f CrossRefGoogle Scholar
  11. Guzel F, Yakut H, Topal G (2008) Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. J Hazard Mater 153:1275–1287. doi: 10.1016/j.jhazmat.2007.09.087 CrossRefGoogle Scholar
  12. Helfferich F (1962) Ion-exchange. McGraw Hill, New York, pp 116–124Google Scholar
  13. Hiseh HL, Yeh GHC (1986) Mechanism of rare-earth catalysis in coordination polymerization. Ind Eng Chem Prod Res Dev 25:456–463. doi: 10.1021/i300023a016 CrossRefGoogle Scholar
  14. Holmes HF, Fuller EL Jr, Secoy CH (1968) Gravimetric adsorption studies of thorium oxide. III. Adsorption of water on porous and nonporous samples. J Phys Chem 72:2293–2300. doi: 10.1021/j100853a002 CrossRefGoogle Scholar
  15. Hussien SS, Desouky OA (2014) Biosorption studies on yttrium using low cost pretreated biomass of Pleurotus ostreatus. In: 4th international conference on radiation research and applied science, Taba, Egypt, pp 139–150Google Scholar
  16. JarosikIzabela MW, Anna IA, Duda AM (2015) High-pressure superconductivity in yttrium: the strong-coupling approach. Solid State Commun 219:1–6. doi: 10.1016/j.ssc.2015.06.014 CrossRefGoogle Scholar
  17. Kosmulski M et al (2016) Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv Colloid Interface Sci 238:1–61. doi: 10.1016/j.cis.2016.10.005 CrossRefGoogle Scholar
  18. Liang P, Cao J, Liu R, Liu Y (2007) Determination of trace rare earth elements by inductively coupled plasma optical emission spectrometry after preconcentration with immobilized nanometer titanium dioxide. Microchim Acta 159:35–40. doi: 10.1007/s00604-006-0708-5P CrossRefGoogle Scholar
  19. Luyckx LA (1981) The rare earth metals in steel. Industrial applications of rare earth elements. Am Chem Soc Symp 164:43–78. doi: 10.1021/bk-1981-0164.ch003 CrossRefGoogle Scholar
  20. Martin JL (1984) Titanium and rare earth chloride catalysts for ethylene polymerization. J Polym Sci 22:3843–3850. doi: 10.1002/pol.1984.170221221 CrossRefGoogle Scholar
  21. Marubashi K, Hirano S, Suzuki KT (1998) Effects of intratracheal pretreatment with yttrium chloride (YCl3) on inflammatory responses of the rat lung following intratracheal instillation of YCl3. Toxicol Lett 99:43–51. doi: 10.1016/S0378-4274(98)00137-4 CrossRefGoogle Scholar
  22. Moldoveanu GA, Papangelakis VG (2012) Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 117:71–78. doi: 10.1016/j.hydromet.2012.02.007 CrossRefGoogle Scholar
  23. Nakamura Y, Tsumura Y, Tonogai Y, Shibata T, Ito Y (1997) Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam Appl Toxicol 37:106–116CrossRefGoogle Scholar
  24. Noack CW, Dzombak DA, Karamalidis AK (2014) Rare earth element distributions and trends in natural waters with a focus on groundwater. Environ Sci Technol 48:4317–4326. doi: 10.1021/es4053895 CrossRefGoogle Scholar
  25. Peng X, Luan Z, Di Z, Zhang Z, Zhu C (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon 43:880–883. doi: 10.1016/j.carbon.2004.11.009 CrossRefGoogle Scholar
  26. Purohit RD, Saha S, Tyagi AK (2001) Nanocrystalline thoria powders via glycine–nitrate combustion. J Nucl Mater 288:7–10. doi: 10.1016/S0022-3115(00)00717-0 CrossRefGoogle Scholar
  27. Quinn KA, Byrne RH, Schijf J (2006) Adsorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength. Mar Chem 99:128–150. doi: 10.1016/j.marchem.2005.05.011 CrossRefGoogle Scholar
  28. Reddy BSB, Mal I, Tewari S, Das K, Das S (2007) Aqueous combustion synthesis and characterization of nanosized tetragonal zirconia single crystal. Metall Mater Trans A 38:1786–1793. doi: 10.1007/s11661-007-9219-1 CrossRefGoogle Scholar
  29. Rhodes WH (1981) Controlled transient solid second-phase sintering of yttria. J Am Ceram Soc 64:13–19. doi: 10.1111/j.1151-2916.1981.tb09551.x CrossRefGoogle Scholar
  30. Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 4:12–16. doi: 10.5491/SHAW.2013.4.1.12 CrossRefGoogle Scholar
  31. Salem R, Thurston KG, Carr BI, Goin JE, Geschwind JF (2002) Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol 13:S223–S229. doi: 10.1016/S1051-0443(07)61790-4 CrossRefGoogle Scholar
  32. Stefanescu DM et al (1986) Neutralization of the deleterious effects of bismuth and lead in gray cast iron by lanthanide additions. In: Conference proceedings on advanced casting technology. ASM, pp 167–173Google Scholar
  33. Szewczuk-Karpisz K, Wisniewska M (2016) Impact of lysozyme on stability mechanism of nano zirconia aqueous suspension. Appl Surf Sci 379:8–13. doi: 10.1016/j.apsusc.2016.04.031 CrossRefGoogle Scholar
  34. Takeshi O, Hirokazu N, Mikiya T (2016) Adsorption mechanism of rare earth elements by adsorbents with diglycolamic acid ligands. Hydrometallurgy 163:156–160. doi: 10.1016/j.hydromet.2016.04.002 CrossRefGoogle Scholar
  35. Trivedi MK, Patil S, Tallapragada RM (2014) Atomic, crystalline and powder characteristics of treated zirconia and silica powders. J Mater Sci Eng 3:144. doi: 10.4172/2169-0022.1000144 CrossRefGoogle Scholar
  36. Vassilis JI, Antonis AZ (2012) Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin Water Treat 39:149–157. doi: 10.1080/19443994.2012.669169 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Department of Chemistry, GITAM Institute of TechnologyGITAM UniversityVisakhapatnamIndia

Personalised recommendations