Trace metals level in sediments and bivalve Trachycardium lacunosum shell in the Persian Gulf

  • M. DehghaniEmail author
  • I. Nabipour
  • S. Dobaradaran
  • H. Godarzi
Original Paper


The current investigation has monitored the concentration of Cd and Pb in bivalve Trachycardium lacunosum shells and the sediment samples in Asaluyeh Bay (north of the Persian Gulf). The samples were taken from 40 stations located in two sites in Asaluyeh region, Nayband Bay as a “contaminated” site and Lavar-e Saheli as a “control” site. The results showed that the mean concentration of Pb and Cd in the sediments were 3.56–5.25 and 1.16–1.44 μg/gdrw, respectively, and in the shell ranged from 11.30 to 13.71 and 2.38 to 2.75 μg/gdrw, respectively. Data indicated that contaminated site contained significantly higher concentration compared with the control site. There were significant positive correlations between the level of Pb and Cd in the shell as well as sediment samples. A biota-sediment accumulation factor of more than one indicated the occurrence of biomagnification of the studied metals in Nayband Bay. Therefore, the elevated amount of the sediments trace metals has led to bioaccumulation in the bivalve shell.


Bioaccumulation Biomagnification Cd Pb Sediment 



We gratefully thank the Vice-Chancellor for Research and Technology of Shiraz University of Medical Sciences for supporting the research project No. 92-6649. Also, the facilities and excellent technical assistance provided at Persian Gulf Studies Center and Marine Ecology (Persian Gulf Research Center), the Department of Toxicology, and Department of the Food and Drug Administration are highly appreciated.


  1. Apti DA, Elijah J, Robinson L (2005) A model for bioaccumulation of metals in Crassostrea virginica from Apalachicola Bay, Florida. Am J Environ Sci 1(3):239–248. doi: 10.3844/ajessp.2005.239.248 CrossRefGoogle Scholar
  2. ASTM (1991) Standard guide for collection, storage, characterization and manipulation of sediments for toxicological testing. Designation: E 1367-90. American Society for Testing and Materials (ASTM), Philadelphia, p 3Google Scholar
  3. Bai JH, Huang LB, Yan DH, Wang QG, Gao HF, Xiao R, Huang C (2011) Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stoch Environ Res Risk Assess 25(5):671–676. doi: 10.1007/s00477-011-0475-7 CrossRefGoogle Scholar
  4. Beg MU, Al-Muzaini S, Saeed T, Jacob PG, Beg KR, Al-Bahloul M, Al-Matrouk K, Al-Obaid T, Kurian A (2001) Chemical contamination and toxicity of sediment from a coastal area receiving industrial effluents in Kuwait. Arch Environ Contam Toxicol 41(3):289–297. doi: 10.1007/s002440010251 CrossRefGoogle Scholar
  5. Berkowitz B, Dror I, Yaron B (2008) Contaminant geochemistry: interactions and transport in the subsurface. Environmental. Springer, Berlin, p 412CrossRefGoogle Scholar
  6. Bilos C, Colombo JC, Presa MJR (1998) Trace metals in suspend particles, sediments and Asiatic estuary, Argentina. Environ Pollut 99(1):1–11CrossRefGoogle Scholar
  7. Birch GF (1996) Sediment-bound metallic contaminants in Sydney’s estuaries and adjacent offshore, Australia. Estuar Coast Shelf Sci 42(1):31–44. doi: 10.1006/ecss.1996.0003 CrossRefGoogle Scholar
  8. Bourhane-Eddine B, Laffray X, Dhib A, Fertouna-Belakhal M, Souad Turki S, Lotfi Aleya L (2013) Factors contributing to heavy metal accumulation in sediments and in the intertidal mussel Perna perna in the Gulf of Annaba (Algeria). Mar Pollut Bull 74:477–489. doi: 10.1016/j.marpolbul.2013.06.004 CrossRefGoogle Scholar
  9. Burger J, Gochfeld M (2006) Locational differences in heavy metals and metalloids in Pacific blue in mussels Mytilus edulis trossulus from Adak Island the Aleutian chain, Alaska. Sci Total Environ 368(2–3):937–950. doi: 10.1016/j.scitotenv.2006.04.022 CrossRefGoogle Scholar
  10. Cranston PS (1990) Biomonitoring and invertebrate taxonomy. Environ Monit Assess 14:265–273. doi: 10.1007/BF00677921 CrossRefGoogle Scholar
  11. de Astudillol LR, Yen UC, Berkele I (2005) Heavy metals in sediments, mussels and oysters from Trinidad and Venezuela. Rev Biol Trop 53(1):41–53 PMID: 17465143 Google Scholar
  12. De Mora S, Fowler SW, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Persian Gulf and Gulf of Oman. Mar Pollut Bull 49(5–6):410–424. doi: 10.1016/j.marpolbul.2004.02.029 CrossRefGoogle Scholar
  13. Dehghan Mediseh S (2007) Identification of sensitive areas and under the dining Mahshahr using ecological and biological indicators. In: Ph.D. Dissertation, Department of Marine Science and Technology. University of Khorramshahr, Ahvaz, IranGoogle Scholar
  14. Dehghani M, Nasseri S, Amin SA, Zamanian Z (2010) Assessment of atrazine distribution in Shiraz soils, south of Iran. Pak J Biol Sci 13(2):66–72. doi: 10.3923/pjbs.2010.66.72 CrossRefGoogle Scholar
  15. Dehghani M, Nasseri S, Hashemi H (2013) Study the bioremediation of atrazine under variable carbon and nitrogen sources by mixed bacterial consortium isolated from corn field soil in Fars province of Iran. J Environ Public Health. doi: 10.1155/2013/973165 CrossRefGoogle Scholar
  16. Dehghani M, Farzadkia M, Shahsavani E, Samaei MR (2014a) Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase. J Environ Health Sci Eng 12:87. doi: 10.1186/2052-336X-12-87 CrossRefGoogle Scholar
  17. Dehghani M, Nasseri S, Ahmadi M, Samaei MR, Anushiravani A (2014b) Removal of penicillin G from aqueous phase by Fe + 3-TiO2/UV-A process. J Environ Health Sci Eng 12(1):56. doi: 10.1186/2052-336X-12-56 CrossRefGoogle Scholar
  18. Delman O, Demirak A, Balci A (2006) Determination of heavy metals (Cd, Pb) and trace elements (Cu, Zn) in sediments and fish of the southeastern Aegean sea (Turkey) by atomic absorption spectrometry. Food Chem 26:157–162. doi: 10.1016/j.foodchem.2005.02.009 CrossRefGoogle Scholar
  19. Dias JF, Fernandez WS, Boufleur LA, dos Santos CEI, Amaral L, Yoneyama ML, Dias JF (2009) Biomonitoring study of seasonal anthropogenic influence at the Itamambuca beach (SP, Brazil). Nucl Instrum Methods Phys Res 267(11):1960–1964. doi: 10.1016/j.nimb.2009.03.100 CrossRefGoogle Scholar
  20. EL-Shenawy NS, Loutfy N, Soliman MF, Tadros M, Abd El-Azeez A (2016) Metals bioaccumulation in two edible bivalves and health risk assessment. Environ Monit Assess 188:139. doi: 10.1007/s10661-016-5145-2 CrossRefGoogle Scholar
  21. Ergin M, Saydam C, Basturk O, Erdem E, Yoruk R (1991) Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the North-eastern Sea of Marmara. Chem Geol 91:269–285. doi: 10.1016/0009-2541(91)90004-B CrossRefGoogle Scholar
  22. Etim L, Akpan ER, Muller P (1991) Temporal trends in heavy metal concentrations in the clam Egeria radiata (Bivalve: Tellinacea- donacidae) from the Cross River, Nigeria. Hydrobiologia 24(4):327–333Google Scholar
  23. Farzadkia M, Dehghani M, Moafian M (2014) The effects of Fenton process on the removal of petroleum hydrocarbons from oily sludge in Shiraz oil refinery, Iran. J Environ Health Sci Eng 12:31. doi: 10.1186/2052-336X-12-31 CrossRefGoogle Scholar
  24. Ferguson PL, Chandler GT (1998) A laboratory and field comparison of sediment polycyclic aromatic hydrocarbons bioaccumulation by the cosmopolitan estuarine polychaete streblospio benedicti (Webster). Mar Environ Res 45:387–401. doi: 10.1016/S0141-1136(98)00101-9 CrossRefGoogle Scholar
  25. Fowler SW, Readman JW, Oregioni B, Villeneuve JP, Mckay K (1993) Petroleum hydrocarbons and trace metals in near shore gulf sediment and biota before and after the 1991 war an assessment of temporal and spatial trends. Mar Pollut Bull 27:171–182CrossRefGoogle Scholar
  26. Gabr HR, Gab-Alla AA-FA (2008) Effects of transplantation on heavy metal concentration in commercial clams of Lake Timsah, Suez Canal. Egypt. Oceanologia 50(1):83–93Google Scholar
  27. Gao H, Bai J, Xiao R, Liu P, Jiang W, Wang J (2013) Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stoch Environ Res Risk Assess 27(1):275–284. doi: 10.1007/s00477-012-0587-8 CrossRefGoogle Scholar
  28. Gavrilovic A, Srebocan F, Pompe-Gotal J, Peterniec Z, Prevendar-Crnic A, Matasin Z (2007) Spatiotemporal variation of some metal concentrations in oysters from the Mali Ston Bay, south-eastern Adriatic, Croatia-potential safety hazard aspect. Vet Med 52(10):457–463CrossRefGoogle Scholar
  29. Gold-Bouchon G, Sima-Alvarez R, Zapata-Perez O, Guemez-Ricalde J (1995) Histopathological effects of petroleum hydrocarbons and heavy metals on the American Oyster (Crassostrea virginica) from Tabasco, Mexico. Mar Pollut Bull 31:439–445CrossRefGoogle Scholar
  30. González-Macías C, Schifter I, Lluch-Cota DB, Méndez-Rodríguez L, Hernández-Vázquez S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118(1):211–230. doi: 10.1007/s10661-006-1492-8 CrossRefGoogle Scholar
  31. Hédouin L, Bustamante P, Churlaud C, Pringault O, Fichez R, Warnau M (2009) Trends in concentrations of selected metalloid and metals in two bivalves from the coral reefs in the SW Lagoon of New Caledonia. Ecotoxicol Environ Saf 72(2):372–381. doi: 10.1016/j.ecoenv.2008.04.004 CrossRefGoogle Scholar
  32. Hu S, Su Z, Jiang J, Huang W, Liang X, Hu J, Chen M, Cai W, Wang J, Zhang X (2016) Lead, cadmium pollution of seafood and human health risk assessment in the coastline of the southern China. Stoch Environ Res Risk Assess 30(5):1379–1386. doi: 10.1007/s00477-015-1139-9 CrossRefGoogle Scholar
  33. Huanxin W, Lejun Z, Presley BJ (2000a) Bioaccumulation of heavy metals in hydrocarbon and artificial radionuclide data. Environ Sci Technol 17:490–496Google Scholar
  34. Huanxin W, Lejun Z, Presley BJ (2000b) Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell. Environ Geol 39(11):1216–1226. doi: 10.1007/s002540000110 CrossRefGoogle Scholar
  35. Irabien MJ, Velasco F (1999) Heavy metals in Oka Rive sediments (Urdaibai National Biosphere Reserve, Northern Spain): lithogenic and anthropogenic effects. Environ Geol 37(1):54–63. doi: 10.1007/s002540050360 CrossRefGoogle Scholar
  36. Islam MS, Ahmed MK, Habibullah-Al-Mamun M (2015) Apportionment of heavy metals in soil and vegetables and associated health risks assessment. Stoch Environ Res Risk Assess 30(1):365–377. doi: 10.1007/s00477-015-1126-1 CrossRefGoogle Scholar
  37. Islami Andargoli T (2008) Investigate the accumulation of heavy metals Ni, Cu, Pb in sediments and mussels Arbatia helblingii in tidal area the coastal city of Bushehr. In: MSc Dissertation, Department of Marine Science and Technology. University of Khorramshahr, Ahvaz, Iran. (In Persian)Google Scholar
  38. Kanakaraju D, Ibrahim F, Veseli MN (2008a) Comparative study of heavy metal concentrations in Rozar clam (Solen regularis) in Moyan and Serpan, Sarawak. Glob J Environ Res 2(2):87–91Google Scholar
  39. Kanakaraju D, Jose CA, Long SM (2008b) Heavy metal concentrations in the Razor clams (Solen SPP) from Muara Tebas, Sarawak. Malays J Anal Sci 12(1):53–58Google Scholar
  40. Lim PE, Lee CK, Din Z (1995) Accumulation of heavy metals by cultured oysters from Merbok Estuary, Malaysia 23. Mar Pollut Bull 31(4):420–423CrossRefGoogle Scholar
  41. Ma M, Zhu W, Wang Z, Witkamp GJ (2003) Accumulation, assimilation and growth inhibition of copper on a freshwater alga (Scenedesmus subspicatus) 86.81 BAG in the presence of EDTA and fulvic acid. Aquat Toxicol 63:221–228 PMID: 12711412 CrossRefGoogle Scholar
  42. Mackay D, Fraser A, Kenneth Mellanby K (2000) Review award. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110(3):375–391 PMID: 15092817 CrossRefGoogle Scholar
  43. Martin G, Monicu AJ, Isidor J (1998–99) Heavy metals in the rock oyster (Crassostrea iridescens) from Mazatlan, Sinaloa, Mexico. Ronson Paulim. In: Parker RL (ed) Composition of the earth crust, from US Department of the interior and geological survey professional paper 440, p 11Google Scholar
  44. Martin GD, Rejomon G, Shaiju P, Muraleedharan KR, Nair SM, Chandramohanakumar N (2012) Toxic metals enrichment in the surficial sediments of a eutrophic tropical Estuary (Cochin Backwaters, Southwest Coast of India). Sci World J. doi: 10.1100/2012/972839 CrossRefGoogle Scholar
  45. Merian E, Anke M, Ihnat M, Stoeppler M (2004) Elements and their compounds in the environment. Wiley, New York, p 1170CrossRefGoogle Scholar
  46. Ochieng EZ, Lalah JO, Wandiga SO (2007) Analysis of heavy metals in water and surface sediment in five Rift Valley Lakes in Kenya for assessment of recent increase in anthropogenic activities. Bull Environ Contam Toxicol 79:570–576. doi: 10.1007/s00128-007-9286-4 CrossRefGoogle Scholar
  47. Olayan-Bu AH, Subrahmanyam MNV (1996) Accumulation of copper, nickel, lead and zinc by snail, Lunella coronatus and pearl oyster, Pinctada radiate from the Kuwait coast before and after the gulf war oil spill. In: Roger NNR and John DB (eds) Environmental analysis, Wiley, New York, p 263Google Scholar
  48. Pourang N, Nikouyan A, Dennis JH (2005) Trace element concentrations in fish, surficial sediments and water from northern part of the Persian Gulf. Environ Monit Assess 109(1–3):293–316. doi: 10.1007/s10661-005-6287-9 CrossRefGoogle Scholar
  49. Priya SL, Senthilkumar B, Hariharan BG, Selvam AP, Purvaja R, Ramesh R (2011) Bioaccumulation of heavy metals in mullet (Mugil cephalus) and oyster Crassostrea madrasensis) from Pulicat Lake, south east coast of India. J Toxicol Ind Health 27(2):117–126. doi: 10.1177/0748233710381892 CrossRefGoogle Scholar
  50. Qu C, Li B, Wu H, Wang S, Li F (2016) Probabilistic ecological risk assessment of heavy metals in sediments from China’s major aquatic bodies. Stoch Environ Res Risk Assess 30(1):271–282. doi: 10.1007/s00477-015-1087-4 CrossRefGoogle Scholar
  51. Rainbow PS (2006) Biomonitoring of trace metals in estuarine and marine environments. Metal pollution and biomonitors. Australas J Ecotoxicol 12:107–122Google Scholar
  52. Rejomon G, Martin GD, Nair SM, Chandramohanakumar N (2013) Biomonitoring of trace metal pollution using the bivalve molluscs, Villorita cyprinoides, from the Cochin backwaters. Environ Monit Assess 185:10317–10331. doi: 10.1007/s10661-013-3334-9 CrossRefGoogle Scholar
  53. Riahi Bakhtiari AR, Shah Mortazavi S (2007) Measurement of Pb and Cd in the shell of Pinctada radiata in Hendorabi Island. J Anim Fish Sci 74:111–117 (in Persian) Google Scholar
  54. Richardson CA, Chenery SRN, Cook JM (2001) Assessing the history of trace metal (Cu, Zn, Pb) contamination in the North Sea through laser ablation—ICP-MS of horse mussel Modiolus modiolus shells. Mar Ecol Prog Ser 211:157–167CrossRefGoogle Scholar
  55. Rogowska J, Kudłak B, Tsakovski S, Gałaszka A, Bajger-Nowak G, Simeonov V, Konieczka PL, Wolska L, Namieśnik J (2015) Surface sediments pollution due to shipwreck s/s “Stuttgart”: a multidisciplinary approach. Stoch Environ Res Risk Assess 29:1797–1807. doi: 10.1007/s00477-015-1054-0015-1054-0 CrossRefGoogle Scholar
  56. Ruus A, Morten Schaanning M, Øxnevad S, Ketil Hylland K (2005) Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquat Toxicol 72(3):273–292. doi: 10.1016/j.aquatox.2005.01.004 CrossRefGoogle Scholar
  57. SabzAli Zadeh S (2008) Evaluation of heavy metals Cu, Pb, Hg, Ni, Co, Zn, Cd and determination of contaminants in sediments and Busyf and Lyfeh area. In: MSc Dissertation, Department of Marine Science and Technology. University of Khorramshahr, Ahvaz, Iran. (In Persian)Google Scholar
  58. Sadig M, Zaidi TH (1985) Metal concentration in pearl oyster, Pinctada radiata, collected from Saudi Arabian coast of the Arabian Gulf. Bull Environ Contam Toxicol 42:111–118Google Scholar
  59. Shirneshan G, Riyahi Bakhtiari A (2012) Accumulation and distribution of Cd, Cu, Pb and Zn in the soft tissue and shell of oysters collected from the northern coast of Qeshm Island, Persian Gulf, Iran. Chem Speciat Bioavailab 24(3):129–138. doi: 10.3184/095422912X13394368814321 CrossRefGoogle Scholar
  60. Sidoumou Z, Gnassia-Barelli M, Siau Y, Morton V, Roméo M (2006) Heavy metal concentrations in molluscs from the Senegal coast. Environ Int 32:384–387. doi: 10.1016/j.envint.2005.09.001 CrossRefGoogle Scholar
  61. Silva CAR, Rainbow PS, Smith BD (2003) Biomonitoring of trace metal contamination in mangrove-lined Brazilian coastal systems using the oyster Crassostrea rhizophorae: comparative study of regions affected by oil, salt pond and shrimp farming activities. Hydrobiologia 501(1):199–206. doi: 10.1023/A:1026242417427 CrossRefGoogle Scholar
  62. Somerset V, Van der Horst C, Silwana B, Walters C, Iwuoha E (2015) Biomonitoring and evaluation of metal concentrations in sediment and crab samples from the North-West Province of South Africa. Water Air Soil Pollut 226:43. doi: 10.1007/s11270-015-2329-2 CrossRefGoogle Scholar
  63. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192CrossRefGoogle Scholar
  64. Usero J, Morillo J, Gracia I (2005) Heavy metal concentrations in mollusks from the Atlantic coast of southern Spain. Chemosphere 59(8):1175–1181. doi: 10.1016/j.chemosphere.2004.11.089 CrossRefGoogle Scholar
  65. Yap CK, Ismail A, Tan SG, Omar H (2002) Correlations between speciation of Cd, Cu, Pb and Zn in sediment and their concentrations in total soft tissue of green lipped mussel Perna viridis from the west coast of Peninsular Malaysia. Environ Int 28(1–2):117–126. doi: 10.1016/S0160-4120(02)00015-6 CrossRefGoogle Scholar
  66. Yap CK, Ismail A, Tan SG, Abdul Rahim I (2003a) Can the shell of the green-lipped mussel Perna viridis (Linnaeus) from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb and Zn? J Estuar Coast Shelf Sci 57:623–630CrossRefGoogle Scholar
  67. Yap CK, Ismail A, Tan SG (2003b) Can the byssus of green-lipped mussel Perna viridis (Linnaeus) from the west coast of Peninsular Malaysia be a biomonitoring organ for Cd, Pb and Zn? Field and laboratory studies. Environ Int 29(4):521–528. doi: 10.1016/S0160-4120(03)00008-4 CrossRefGoogle Scholar
  68. Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54(6):1051–1070. doi: 10.1006/ecss.2001.0879 CrossRefGoogle Scholar
  69. Zorita I, Zarragoitia M, Soto M, Gajaraville P (2006) Biomarkers in mussels from a copper site gradient (Visnes, Norway) an integrated biochemical, histochemical and histological study. Aquat Toxicol 78:109–116. doi: 10.1016/j.aquatox.2006.02.032 CrossRefGoogle Scholar
  70. Zuykov M, Pelletier E, Harper DAT (2013) Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere 93:201–208. doi: 10.1016/j.chemosphere.2013.05.001 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • M. Dehghani
    • 1
    Email author
  • I. Nabipour
    • 2
  • S. Dobaradaran
    • 3
  • H. Godarzi
    • 4
  1. 1.Research Center for Health Sciences, Department of Environmental Health, School of HealthShiraz University of Medical SciencesShirazIslamic Republic of Iran
  2. 2.The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research InstituteBushehr University of Medical SciencesBushehrIslamic Republic of Iran
  3. 3.Department of Environmental Health Engineering, School of HealthBushehr University of Medical SciencesBushehrIslamic Republic of Iran
  4. 4.Department of Environmental Health Engineering, School of HealthShiraz University of Medical SciencesShirazIslamic Republic of Iran

Personalised recommendations